
OpenStack
with Kolla

GitHub Web Hooks
with Bash

Run GNOME
in a Container

What Exactly Is DevOps?

Building a Successful Infrastructure

Configuration Management with Ansible

CI/CD with FOSS Tools

Calculating the ROI of DevSecOps

PLUS GEEK GUIDE
ISSUE 301 | AUGUST 2019

www.linuxjournal.com

Since 1994: The original magazine of the Linux community

https://www.linuxjournal.com

CONTENTS AUGUST 2019
ISSUE 301

2 | August 2019 | https://www.linuxjournal.com

61 Experts Attempt to Explain DevOps—and Almost Succeed
 by Bryan Lunduke

 What is DevOps? How does it relate to other ideas and methodologies within
 software development?

68 Continuous Integration/Continuous Development with
 FOSS Tools
 by Quentin Hartman

 Up your DevOps game! Get the fundamentals of CI/CD with FOSS tools now!

78 Digging Through the DevOps Arsenal: Introducing Ansible
 by Petros Koutoupis

 If you need to deploy hundreds of server or client nodes in parallel, maybe on
 premises or in the cloud, and you need to configure each and every single one
 of them, what do you do?

88 My Favorite Infrastructure
 by Kyle Rankin

 Take a tour through the best infrastructure I ever built with stops in architecture,
 disaster recovery, configuration management, orchestration and security.

60 DEEP DIVE: DevOps

 BONUS: GEEK GUIDE
 Calculating the ROI of DevSecOps
 by Petros Koutoupis

https://www.linuxjournal.com

LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC. Subscription-related correspondence may be sent to
9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

CONTENTS

3 | August 2019 | https://www.linuxjournal.com

6 The DevOps Issue
by Bryan Lunduke

8 From the Editor
by Doc Searls
Where the Internet Gets Real

 UPFRONT
14 DNA Geometry with cadnano

by Joey Bernard

21 Patreon and Linux Journal

22 Loadsharers: Funding the Load-Bearing Internet Person
by Eric S. Raymond

27 Reality 2.0: a Linux Journal Podcast

28 News Briefs

 COLUMNS
32 Kyle Rankin’s Hack and /

RV Offsite Backup Update

37 Reuven M. Lerner’s At the Forge

Understanding Python’s asyncio

44 Dave Taylor’s Work the Shell

Bash Shell Games: Continuing Development of the Go Fish! Game

51 Zack Brown’s diff -u

What’s New in Kernel Development

166 Glyn Moody’s Open Sauce

Open Source Is Good, but How Can It Do Good?

https://www.linuxjournal.com

AT YOUR SERVICE
SUBSCRIPTIONS: Linux Journal is available as a digital
magazine, in PDF, EPUB and MOBI formats. Renewing
your subscription, changing your email address for issue
delivery, paying your invoice, viewing your account details
or other subscription inquiries can be done instantly
online: https://www.linuxjournal.com/subs. Email us at
subs@linuxjournal.com or reach us via postal mail at Linux Journal,
9597 Jones Rd #331, Houston, TX 77065 USA. Please remember to
include your complete name and address when contacting us.

ACCESSING THE DIGITAL ARCHIVE: Your monthly download
notifications will have links to the different formats and to the
digital archive. To access the digital archive at any time, log in
at https://www.linuxjournal.com/digital.

LETTERS TO THE EDITOR: We welcome your letters
and encourage you to submit them at
https://www.linuxjournal.com/contact or mail them to
Linux Journal, 9597 Jones Rd #331, Houston, TX 77065 USA.
Letters may be edited for space and clarity.

SPONSORSHIP: We take digital privacy and digital
responsibility seriously. We've wiped off all old advertising
from Linux Journal and are starting with a clean slate. Ads
we feature will no longer be of the spying kind you find
on most sites, generally called "adtech". The one form of
advertising we have brought back is sponsorship. That's where
advertisers support Linux Journal because they like what we
do and want to reach our readers in general. At their best,
ads in a publication and on a site like Linux Journal
provide useful information as well as financial support.
There is symbiosis there. For further information, email:
sponsorship@linuxjournal.com or call +1-360-890-6285.

WRITING FOR US: We always are looking for contributed
articles, tutorials and real-world stories for the magazine. An
author’s guide, a list of topics and due dates can be found
online: https://www.linuxjournal.com/author.

NEWSLETTERS: Receive late-breaking news, technical tips
and tricks, an inside look at upcoming issues and links to in-
depth stories featured on https://www.linuxjournal.com.
Subscribe for free today: https://www.linuxjournal.com/
enewsletters.

CONTENTS

4 | August 2019 | https://www.linuxjournal.com

 ARTICLES
106 Build a Versatile OpenStack Lab with Kolla

by John S. Tonello
Hone your OpenStack skills with a full deployment in a single virtual machine.

127 Running GNOME in a Container
by Adam Verslype
Containerizing the GUI separates your work and play.

141 Writing GitHub Web Hooks with Bash
by Andy Carlson
Bring your GitHub repository to the next level of functionality.

151 Words, Words Words—Introducing OpenSearchServer
by Marcel Gagné
How to create your own search engine combined with a crawler that will index
all sorts of documents.

https://www.linuxjournal.com/subs
mailto:subs@linuxjournal.com
https://www.linuxjournal.com/digital
https://www.linuxjournal.com/contact
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com/author
https://www.linuxjournal.com
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com/enewsletters
https://www.linuxjournal.com

EDITOR IN CHIEF: Doc Searls, doc@linuxjournal.com

EXECUTIVE EDITOR: Jill Franklin, jill@linuxjournal.com

DEPUTY EDITOR: Bryan Lunduke, bryan@lunduke.com

TECH EDITOR: Kyle Rankin, lj@greenfly.net

ASSOCIATE EDITOR: Shawn Powers, shawn@linuxjournal.com

EDITOR AT LARGE: Petros Koutoupis, petros@linux.com

CONTRIBUTING EDITOR: Zack Brown, zacharyb@gmail.com

SENIOR COLUMNIST: Reuven Lerner, reuven@lerner.co.il

SENIOR COLUMNIST: Dave Taylor, taylor@linuxjournal.com

PUBLISHER: Carlie Fairchild, publisher@linuxjournal.com

ASSOCIATE PUBLISHER: Mark Irgang, mark@linuxjournal.com

DIRECTOR OF DIGITAL EXPERIENCE:
Katherine Druckman, webmistress@linuxjournal.com

DIRECTOR OF SALES: Danna Vedder, danna@linuxjournal.com

GRAPHIC DESIGNER: Garrick Antikajian, garrick@linuxjournal.com

ACCOUNTANT: Candy Beauchamp, acct@linuxjournal.com

COMMUNITY ADVISORY BOARD
John Abreau, Boston Linux & UNIX Group; John Alexander, Shropshire Linux User Group;

Robert Belnap, Classic Hackers UGA Users Group; Lawrence D’Oliveiro, Waikato Linux Users Group; Chris
Ebenezer, Silicon Corridor Linux User Group; David Egts, Akron Linux Users Group;

Michael Fox, Peterborough Linux User Group; Braddock Gaskill, San Gabriel Valley Linux Users’ Group;
Roy Lindauer, Reno Linux Users Group; James Mason, Bellingham Linux User Group;

Scott Murphy, Ottawa Canada Linux Users Group; Andrew Pam, Linux Users of Victoria;
Bob Proulx, Northern Colorado Linux User's Group; Ian Sacklow, Capital District Linux Users Group;
Ron Singh, Kitchener-Waterloo Linux User Group; Jeff Smith, Kitchener-Waterloo Linux User Group;

Matt Smith, North Bay Linux Users’ Group; James Snyder, Kent Linux User Group;
Paul Tansom, Portsmouth and South East Hampshire Linux User Group;

Gary Turner, Dayton Linux Users Group; Sam Williams, Rock River Linux Users Group;
Stephen Worley, Linux Users’ Group at North Carolina State University;

Lukas Yoder, Linux Users Group at Georgia Tech

Linux Journal is published by, and is a registered trade name of,
Linux Journal, LLC. 4643 S. Ulster St. Ste 1120 Denver, CO 80237

SUBSCRIPTIONS
E-MAIL: subs@inuxjournal.com

URL: www.linuxjournal.com/subscribe
Mail: 9597 Jones Rd, #331, Houston, TX 77065

SPONSORSHIPS
E-MAIL: sponsorship@linuxjournal.com
Contact: Director of Sales Danna Vedder

Phone: +1-360-890-6285

LINUX is a registered trademark of Linus Torvalds.

Private Internet Access is a proud sponsor of Linux Journal .

Join a
community
with a deep

appreciation
for open-source

philosophies,
digital

freedoms
and privacy.

Subscribe to
Linux Journal
Digital Edition

for only $2.88 an issue.

SUBSCRIBE
TODAY!

5 | August 2019 | https://www.linuxjournal.com

http://blu.org/
https://shropshirelug.wordpress.com/
http://chugalug.uga.edu/
http://www.wlug.org.nz/
http://sclug.org.uk/
https://plugintolinux.ca/
http://sgvlug.org/
http://www.rlug.org/
http://blug.org/
https://linux-ottawa.org/
https://luv.asn.au/
mailto:bob@proulx.com
http://www.nclug.org/
http://www.cdlug.net/
https://kwlug.org/
https://kwlug.org/
http://www.nblug.org/
http://kentlug.org/
http://portsmouth.lug.org.uk/
http://www.dma1.org/linux
http://www.rrlug.org/
https://lug.ncsu.edu/info
https://lugatgt.org/
mailto:doc@linuxjournal.com
mailto:jill@linuxjournal.com
mailto:bryan@lunduke.com
mailto:lj@greenfly.net
mailto:shawn@linuxjournal.com
mailto:petros@linux.com
mailto:zacharyb@gmail.com
mailto:reuven@lerner.co.il
mailto:taylor@linuxjournal.com
mailto:publisher@linuxjournal.com
mailto:mark@linuxjournal.com
mailto:webmistress@linuxjournal.com
mailto:danna@linuxjournal.com
mailto:garrick@linuxjournal.com
mailto:acct@linuxjournal.com
mailto:subs@inuxjournal.com
http://www.linuxjournal.com/subscribe
mailto:sponsorship@linuxjournal.com
https://www.linuxjournal.com
http://subscribe.linuxjournal.com

6 | August 2019 | https://www.linuxjournal.com

Bryan Lunduke is a former
Software Tester, former
Programmer, former VP of
Technology, former Linux
Marketing Guy (tm), former
openSUSE Board Member...
and current Deputy Editor
of Linux Journal, Marketing
Director for Purism, as
well as host of the popular
Lunduke Show. More details:
http://lunduke.com.

By Bryan Lunduke

Every few years a new term is coined within the computer
industry—big data, machine learning, agile development,
Internet of Things, just to name a few. You’d be forgiven for
not knowing them all.

Some of these are new ideas. Some are refinements on
existing ideas. Others still are simply notions we’ve all had
for a long time, but now we have a new word to describe
said notions.

Which brings me to a topic we cover in depth in this issue of
Linux Journal: DevOps.

Not sure what DevOps is? Need it explained to you? It’s okay,
I was in the same boat. Start off by reading “Experts Attempt
to Explain DevOps—and Almost Succeed” to get a high-level
explanation of what this whole DevOps brouhaha is all about.

Once you’ve got the concept of DevOps firmly implanted in
your brain, it’s time to dive in and look at how specific parts
of DevOps can be implemented, starting with “Continuous
Integration/Continuous Development with FOSS Tools” by

The
DevOps
Issue

http://lunduke.com/
https://www.linuxjournal.com

7 | August 2019 | https://www.linuxjournal.com

The DevOps Issue

Quentin Hartman, Director of Infrastructure and DevOps at Finalze.

Next, turn to Linux Journal’s very own Editor at Large (and senior performance
software engineer at Cray), Petros Koutoupis, for a look at how to install and utilize
Ansible to deploy and configure large numbers of Linux servers all at once. It’s a nifty
tool to have in your toolbelt, especially when looking to do things “The DevOps Way”.

Okay, you’ve got the idea of DevOps, and you know some of the tools you can utilize
with it as you build out a big, expansive online service. But what does a truly excellent
system really look like? What components does it consist of? How does one go about
selecting said components?

Luckily, we’ve got Kyle Rankin’s aptly titled “My Favorite Infrastructure” to
answer those questions. Linux Journal ’s illustrious Tech Editor (and Chief
Security Officer at Purism) gives a tour of, what he considers to be, the best
infrastructure he ever built. Including details on the architecture, configuration
management, security and disaster recovery.

Oh, but we’re not done! Ever want to build an OpenStack implementation on top
of Fedora, openSUSE or Debian? John S. Tonello, the Global Technical Marketing
Manager at SUSE, walks through exactly that with the help of free software tools like
Kolla, Docker, qemu and pip. It’s a veritable smorgasbord of Linux server-y goodness.

Looking for something a little less DevOps-y? Marcel Gagné describes how to
build your own search engine (seriously) in “Words, Words, Words—Introducing
OpenSearchServer”, Andy Carlson writes about “Writing GitHub Web Hooks with Bash”,
and Adam Verslype shows how to run GNOME (the whole desktop environment) within
a container in “Running GNOME in a Container”. Oh, and be sure to check out the piece
from Eric S. Raymond, titled “Loadshares: Funding the Load-Bearing Internet Person”,
on the sustainability problem with having a small collection of individuals maintaining
projects critical to the global internet infrastructure. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

8 | August 2019 | https://www.linuxjournal.com

Doc Searls is a veteran
journalist, author and part-time
academic who spent more than
two decades elsewhere on the
Linux Journal masthead before
becoming Editor in Chief when
the magazine was reborn in
January 2018. His two books
are The Cluetrain Manifesto,
which he co-wrote for Basic
Books in 2000 and updated
in 2010, and The Intention
Economy: When Customers
Take Charge, which he wrote
for Harvard Business Review
Press in 2012. On the academic
front, Doc runs ProjectVRM,
hosted at Harvard’s Berkman
Klein Center for Internet and
Society, where he served as a
fellow from 2006–2010. He was
also a visiting scholar at NYU’s
graduate school of journalism
from 2012–2014, and he has
been a fellow at UC Santa
Barbara’s Center for Information
Technology and Society since
2006, studying the internet as
a form of infrastructure.

FROM THE EDITOR

Where the
Internet
Gets Real
Local is the frontier of truth at the dawn of our
Digital Age.

By Doc Searls

The internet showed up in our house in 1995. When that
happened, I mansplained to my wife that it was a global
drawstring through all the phone and cable companies of the
world, pulling everybody and everything together—and that
this was going to be good for the world.

My wife, who ran a global business, already knew plenty of
things about the internet and expected good things to happen
as well. But she pushed back on the global thing, saying “the
sweet spot of the internet is local.” Her reason: “Local is where
the internet gets real.” By which she meant the internet wasn’t
real in the physical sense anywhere, and we still live and work in
the physical world, and that was a huge advantage.

Later I made a big thing about how the internet was absent of
distance, an observation I owe to Craig Burton. Here’s Craig in
a 1999 interview for a Linux Journal newsletter that I sourced
later in this 2000 column:

https://www.linkedin.com/in/burtonian/
https://www.linuxjournal.com/article/5912
https://www.linuxjournal.com

9 | August 2019 | https://www.linuxjournal.com

FROM THE EDITOR

I see the Net as a world we might see as a bubble. A sphere. It’s growing larger
and larger, and yet inside, every point in that sphere is visible to every other one.
That’s the architecture of a sphere. Nothing stands between any two points.
That’s its virtue: it’s empty in the middle. The distance between any two points
is functionally zero, and not just because they can see each other, but because
nothing interferes with operation between any two points. There’s a word I like
for what’s going on here: terraform. It’s the verb for creating a world. That’s
what we’re making here: a new world. Now the question is, what are we going to
do to cause planetary existence? How can we terraform this new world in a way
that works for the world and not just ourselves?

In Linux Journal (see my article “The Giant Zero, Part 0.x”) and elsewhere, I joined
Craig in calling that world “the giant zero”. Again my wife weighed in with a helpful
point: the internet has no gravity as well as no distance—meaning we are not only
placeless when we’re on the net, but that prepositions such as on (uttered earlier
in this sentence) were literally wrong, even though they made metaphorical sense.
See, most prepositions express spatial relations that require distance, gravity or both.
Over, under, through, around, beside and within are all examples. The one preposition
that does apply for the net is with, because we are clearly with another person (or
whatever) when we are engaged with them on (can’t help using that word) the net.

Anyway, her main point about gravity’s absence on the internet was that we
eventually would learn to adapt to it, much as astronauts learn to adapt to
the weightlessness of life in space. She also noted that adaptation for a whole
civilization takes time, and living on the internet in the meantime requires a
wariness akin to broken field running while naked, except that there’s no field and
we’re not running. We are, however, naked, unless we use protections to conceal
our private spaces and activities. While most wizards (for example, Linux Journal
readers) are good at that, most muggles are not.

But all of us are still vulnerable to cons, and those are easier to perpetrate on the
net—or with the help of it—than off of it.

To explain what I mean, recall “On the Internet, nobody knows you’re a dog”, first uttered
in the 1993 New Yorker cartoon by Peter Steiner. Bob Mankoff, the magazine’s cartoon

https://www.linuxjournal.com/content/giant-zero-part-0x
https://www.google.com/search?&q=doc+searls+
https://www.nytimes.com/2000/12/14/technology/cartoon-captures-spirit-of-the-internet.html
https://en.wikipedia.org/wiki/Peter_Steiner_(cartoonist)
https://www.newyorker.com/cartoons/bob-mankoff
https://www.linuxjournal.com

10 | August 2019 | https://www.linuxjournal.com

FROM THE EDITOR

editor at the time, said it “resonated with our wariness about the facile façade that could
be thrown up by anyone with a rudimentary knowledge of html”.

Think about that: a facile façad.

Building these has become a big thing in the past few years. So big, in fact, that lying
is strategically opportune nearly everywhere on the net, largely because there’s no
“where” there.

Note: to make my main points, I’m bypassing technical details such as latencies and ways to
tell roughly (or even exactly) where in the world an IP address is. The fact remains that the
experience of using the net is fundamentally a placeless one.

Scott Adams, who does the Dilbert comic strip, explains why, and how, in his
latest book, called Win Bigly: Persuasion in a World Where Facts Don’t Matter. That
world is the same internet where nobody knows you’re a dog. Or if they do know
you’re a dog, they don’t care that you’re a dog—or that you’re lying. On the internet,
you can build such a facile façade that people—lots of them—actually like what you
say, and agree with it, whether you’re lying or not, or maybe even because you’re
lying. They just like your act.

But here’s a thing: you can’t play that dog with your neighbors, or in a firefight, or
anywhere in the physical world where facts do matter, and life depends on them.
Facile or not, façades don’t work there.

So, a local real-world corollary to Scott’s book might be Play Nicely: Putting the Internet
to Work Where Facts Matter Most. Which is locally.

There are lots of examples I can point to, but I’ll keep it to three.

The first is a simple service that showed up at our house in the Bay Area back in 1995:
Craigslist. While Craigslist now works in dozens of countries and languages, it’s local
in every one of them, and it works the same simple ways, with plain and simple HTML
that loads in an instant. It’s also human. On Craigslist, people easily can tell when a
seller is a dog, or trying to sell one.

https://www.washingtonpost.com/blogs/comic-riffs/post/nobody-knows-youre-a-dog-as-iconic-internet-cartoon-turns-20-creator-peter-steiner-knows-the-joke-rings-as-relevant-as-ever/2013/07/31/73372600-f98d-11e2-8e84-c56731a202fb_blog.html?noredirect=on&utm_term=.b42e7c5446a1
https://en.wikipedia.org/wiki/Scott_Adams
https://newyork.craigslist.org/
https://www.linuxjournal.com
https://en.wikipedia.org/wiki/Dilbert

11 | August 2019 | https://www.linuxjournal.com

FROM THE EDITOR

I had my own experience with that when my old car died last year and I went looking
for a new one. A guy I contacted on Craigslist tried to sell me a bad car. His façade
was facile, but it fell down when we took the car to a mechanic who told us it was a
dog, and so was the guy.

Right after that, I bought another car on Craigslist from an honest seller—and sold my
old car on Craigslist as well. No dogs involved.

My second example is what’s being done for water in some of Africa’s arid regions.
Water is hard to find, and it can sometimes be hard to trust when people do find it. In
many of these places, there are also few if any sanitation facilities, and grazing animals
can contribute waste to the few streams that flow. So the only sure way to get safe
water is to drill a well deep in the ground.

To gather facts about the quality of that water, people are using monitors from a
company called SweetSense, which sells monitors that measure real-time water
quality. Data from the monitors is gathered and visualized on a platform by another
company called mWater, over a smartphone data connection. This gives everybody
concerned an easy way to monitor water quality in real time. The result isn’t just safe
water, but better sanitation practices, better irrigation systems and so on. My point is
that there’s nothing fake in this system: no facile façades or dogs selling dogs. It’s just
about what people do with tech where they live, and for each other.

My third example is what happened in January 2018, in Montecito, California, which
is one zip code away from our home in Santa Barbara. After a massive wildfire in
December burned all the vegetation off the mountains above Montecito, big rains hit,
washing down half a million tons of mud and rocks, destroying almost 200 homes
and killing 23 people, two of whom were never found.

Immediately after that happened, Montecito was evacuated, and access to it was
blocked to everybody other than rescue, law enforcement, utility workers and other
officials. A few local media folks were let in, but the shock was so massive that it was
hard for anybody to make full sense of it. After all, nothing like this had ever happened
in recorded history, which around there goes back to the 1700s. But still, in times like
this, we all do what we can.

http://www.sweetsensors.com/
https://www.mwater.co/
https://en.wikipedia.org/wiki/2018_Southern_California_mudflows
https://www.linuxjournal.com

12 | August 2019 | https://www.linuxjournal.com

FROM THE EDITOR

Because I know some geology, and not much was being said in any media about how
a mountain face could slop across a town, I published a long blog post titled “Making
sense of what happened in Montecito”. In it, I explained why these kinds of events are
called debris flows (rather than mudslides or landslides), and listed all the addresses
of all the structures (mostly homes) that local officials said were destroyed. (The
county produced an excellent map, but the addresses were under mouse-overs.) That
way, owners, friends and relatives could find those addresses in a search engine.

Visits to my blog jumped from dozens per day to dozens of thousands. Far as I could
tell, nearly all those visits were by local residents or people who cared personally
about happened to Montecito.

My point here is that I did what I could, as did all the other locals posting their own
forms of help on the net. Together we scaffolded up a shared understanding of the
event and progress toward full recovery.

As it happens, I started writing this column in Santa Barbara, continued writing it in
New York, and am finishing it now in Córdoba, a beautiful city in southern Spain. I was
brought here to give a talk on exactly this subject, titled “The Future of the Internet Is
Local”. In the audience were local officials, businesses and organizations. I framed the
talk with a historical perspective: the internet we know—the one with e-commerce,
ISPs and graphical browsers—is about 1/1000th the age of Córdoba. We are still at the
dawn of life in a non-place that is absent of distance and gravity, but which we still use
and experience in the physical world.

The first rule of every new technology is what can be done will be done—until we realize
what shouldn’t be done. This has been true for everything from stone tools through
nuclear power. And, now it’s true of digital technology and the internet. We’ll never
rid the net of lies or facile façades, any more than we’ll rid hammers of their ability to
kill somebody with a whack on the head. But we can and will get more civilized about
it. And my wife is right: local is where that will start. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://blogs.harvard.edu/doc/2018/01/15/montecito/
https://blogs.harvard.edu/doc/2018/01/15/montecito/
https://en.wikipedia.org/wiki/Debris_flow
https://sbc-gis.maps.arcgis.com/apps/webappviewer/index.html?id=ee848a57d8b2416eb2802da300df5b6e
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

12 monthly digital issues

Join the Open-Source Crusade

You subscription includes:

Fully searchable access to our
entire archive (nearly 300 issues)

Bonus ebook, Sys Admin Fundamentals
sent with your paid order

Subscr ibe .L inuxJourna l . com

https://subscribe.linuxjournal.com

14 | August 2019 | https://www.linuxjournal.com

UPFRONT

DNA Geometry
with cadnano
This article introduces a tool you can use to work on three-dimensional DNA origami.
The package is called cadnano, and it’s currently being developed at the Wyss
Institute. With this package, you’ll be able to construct and manipulate the three-
dimensional representations of DNA structures, as well as generate publication-quality
graphics of your work.

Because this software is research-based, you won’t likely find it in the package
repository for your favourite distribution, in which case you’ll need to install it from
the GitHub repository.

Since cadnano is a Python program, written to use the Qt framework, you’ll need to
install some packages first. For example, in Debian-based distributions, you’ll want to
run the following commands:

sudo apt-get install python3 python3-pip

I found that installation was a bit tricky, so I created a virtual Python environment to
manage module installations.

Once you’re in your activated virtualenv, install the required Python modules with
the command:

pip3 install pythreejs termcolor pytz pandas pyqt5 sip

UPFRONT

https://cadnano.org/
https://www.linuxjournal.com

15 | August 2019 | https://www.linuxjournal.com

UPFRONT

After those dependencies are installed, grab the source code with the command:

git clone https://github.com/cadnano/cadnano2.5.git

This will grab the Qt5 version. The Qt4 version is in the repository
https://github.com/cadnano/cadnano2.git.

Changing directory into the source directory, you can build and install cadnano with:

python setup.py install

Now your cadnano should be available within the virtualenv.

Figure 1. When you first start cadnano, you get a completely blank work space.

https://github.com/cadnano/cadnano2.git
https://www.linuxjournal.com

16 | August 2019 | https://www.linuxjournal.com

UPFRONT

You can start cadnano simply by executing the cadnano command from a terminal
window. You’ll see an essentially blank workspace, made up of several empty view
panes and an empty inspector pane on the far right-hand side.

In order to walk through a few of the functions available in cadnano, let’s create a six-
strand nanotube. The first step is to create a background that you can use to build
upon. At the top of the main window, you’ll find three buttons in the toolbar that will
let you create a “Freeform”, “Honeycomb” or “Square” framework. For this example,
click the honeycomb button.

You might notice that the initial rendering of the framework is not ideal for further
work. You can zoom in and out using your mouse wheel within the view pane of
interest. You’ll also notice that the Create button in the toolbar is selected, meaning

Figure 2. Start your construction with one of the available geometric frameworks.

https://www.linuxjournal.com

17 | August 2019 | https://www.linuxjournal.com

UPFRONT

you’re are ready to start adding DNA strands. Beginning at the nearest circle to the
center, located just above the center, and going counterclockwise, click on the six
circles around the center point.

These six strands now will be numbered from 0 to 5, going counterclockwise around
the center point. This representation is what you would see by looking at your
nanotube edge-on, as if it had been cut across its thickness. The inspector pane on
the far right side now contains entries for six virtual helices. A new pane will have
opened at the bottom right-hand side, where you can see detailed properties for the
selected entry from the inspector pane.

At this point, you can zoom in on a particular pane to do further work. At the top
right-hand side of the toolbar, you’ll see three icons for the various available views.

Figure 3. Start by creating an arrangement of DNA strands to define your origami structure.

https://www.linuxjournal.com

18 | August 2019 | https://www.linuxjournal.com

UPFRONT

Click the “Toggle Slice” button so that it goes away and the Path viewer pane becomes
the main pane.

In this view, you can design your strands, breaks and crossovers in greater detail. Clicking
and dragging on a particular strand will define sections of scaffolding, where other DNA
segments will be attached. You’ll see a new oligo entry in the inspector pane. You can
add a DNA sequence by clicking the “Seq” button in the toolbar. Now when you click on
a section in the diagram, cadnano will pop up a new window where you can either select
from one of the predefined DNA segments or insert a custom one.

You can introduce breaks by clicking the “Break” icon in the toolbar, and then clicking

Figure 4. You can select a single viewer pane and zoom in on the DNA structure to do more
detailed design work.

https://www.linuxjournal.com

19 | August 2019 | https://www.linuxjournal.com

UPFRONT

on the section of scaffolding where you want to introduce the break. Continue
repeating these steps to build your entire origami structure.

When you have built a system, you’ll want to save all of this work. Click File→Save As
to save your work and give it a filename. Cadnano uses JSON as the file format for
the structures within your system. This means you easily can look at the file and even
make manual changes if needed. You also can export the DNA sequences themselves
by clicking the Export button in the toolbar. This writes the sequences out as a CSV
file of each segment. You then can use this in other genomics software. Another way

Figure 5. You can add DNA segments to the scaffolding you’ve built within your strands.

https://www.linuxjournal.com

20 | August 2019 | https://www.linuxjournal.com

UPFRONT

to save your work is to click the SVG button in the toolbar, which generates an image
file in SVG format that you then can use in publications or reports.

Although I’ve been describing using the GUI provided with cadnano, that’s not the
only way to play with DNA origami. cadnano was written to act as a standard Python
module, which means that you can import cadnano into your own Python code and
use it to create and manipulate your DNA structures programmatically. This makes
most sense in cases when you’ll be generating a large number of systems, or if you’re
making more complicated systems that are difficult to create using a mouse and a
GUI. A basic boilerplate looks like the following:

import cadnano
from cadnano.document import Document
app = cadnano.app()
doc = app.document = Document()
doc.readFile('myfile.json')
part = doc.activePart()

This boilerplate code creates a new app, and then a new Document within the app.
The Document object contains everything for your DNA origami structure. The fifth
line reads in a JSON file that contains the structure that you wanted to manipulate.
The last line gets the parent Part object that contains all of the other parts, strands
crossovers and so on. You also can use this Python module to create completely new
systems that you can save for later use.

Hopefully, this short article shows you a bit of the functionality available with
cadnano. Because it is used as research software and developed as such, it may not be
as heavily worked on as other projects. But, if genomics and building DNA structures
is part of your work, cadnano is definitely a good place to start.

See the cadnano documentation for more details.

—Joey Bernard

https://cadnano.readthedocs.io/en/master/index.html
https://www.linuxjournal.com

21 | August 2019 | https://www.linuxjournal.com

UPFRONT

Patreon and
Linux Journal

Together with the help of Linux Journal
supporters and subscribers, we can
offer trusted reporting for the world
of open-source today, tomorrow and
in the future. To our subscribers, old

and new, we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving support from readers via Patreon on our website.
LJ community members who pledge $20 per month or more will be featured each
month in the magazine. A very special thank you this month goes to:

• Appahost.com
• Brian Goodrich
• Chris Short
• Christel Dahlskjaer
• David Breakey
• Dr. Stuart Makowski
• Fred
• Henrik Halbritter (Albritter)
• James Mayes

• Jay M
• Joe
• Josh Simmons
• LinuxMagic Inc.
• Lorin Ricker
• Oleksandr Suvorov
• Paul Wood
• Taz Brown

Now also find @linuxjournal on Liberapay. Thank you to our very first
Liberapay supporter and the person who gave us this great suggestion:
Mostly_Linux.

https://www.patreon.com/linuxjournal
https://www.patreon.com/linuxjournal
https://www.linuxjournal.com

22 | August 2019 | https://www.linuxjournal.com

UPFRONT

Loadsharers:
Funding the
Load-Bearing
Internet Person

The internet has a sustainability problem.
Many of its critical services depend on the
dedication of unpaid volunteers, because they
can’t be monetized and thus don’t have any
revenue stream for the maintainers to live
on. I’m talking about services like DNS, time
synchronization, crypto libraries—software
without which the net and the browser you’re
using couldn’t function.

These volunteer maintainers are the Load-
Bearing Internet People (LBIP). Underfunding

them is a problem, because underfunded critical services tend to have gaps and
holes that could have been fixed if there were more full-time attention on them. As
our civilization becomes increasingly dependent on this software infrastructure, that
attention shortfall could lead to disastrous outages.

I’ve been worrying about this problem since 2012, when I watched a hacker I know
wreck his health while working on a critical infrastructure problem nobody else
understood at the time. Billions of dollars in e-commerce hung on getting the
particular software problem he had spotted solved, but because it masqueraded as

https://www.linuxjournal.com

23 | August 2019 | https://www.linuxjournal.com

UPFRONT

network undercapacity, he had a lot of trouble getting even technically-savvy people
to understand where the problem was. He solved it, but unable to afford medical
insurance and literally living in a tent, he eventually went blind in one eye and is now
prone to depressive spells.

More recently, I damaged my ankle and discovered that although there is such a thing
as minor surgery on the medical level, there is no such thing as “minor surgery” on the
financial level. I was looking—still am looking—at a serious prospect of either having
my life savings wiped out or having to leave all 52 of the open-source projects I’m
responsible for in the lurch as I scrambled for a full-time job. Projects at risk include
the likes of GIFLIB, GPSD and NTPsec.

That refocused my mind on the LBIP problem. There aren’t many Load-Bearing
Internet People—probably on the close order of 1,000 worldwide—but they’re a
systemic vulnerability made inevitable by the existence of common software and
internet services that can’t be metered. And, burning them out is a serious problem.
Even under the most cold-blooded assessment, civilization needs the mean service life
of an LBIP to be long enough to train and acculturate a replacement.

(If that made you wonder—yes, in fact, I am training an apprentice. Different problem
for a different article.)

Alas, traditional centralized funding models have failed the LBIPs. There are a few
reasons for this:

• LBIPs don’t tend to be visible to funding organizations, which generally lack the
expertise and on-the-ground connections to identify and evaluate them.

• Most LBIP projects don’t exist as legal entities, and LBIPs are poorly positioned to
deal with bureaucratic overhead or reporting requirements.

• Funding organizations near this space are notoriously prone to capture by
corporations, political factions and internal vanity projects. The money tends to

https://www.linuxjournal.com

24 | August 2019 | https://www.linuxjournal.com

UPFRONT

run out before it gets to the LBIPs who actually need it.

Some of you might think “But what about The Internet Society?” or the “Core
Infrastructure Initiative (CII)?” Unfortunately, those organizations turn out to
illustrate the problem perfectly. Funding LBIPs isn’t in ISOC’s charter at all. For every
high-visibility infrastructure project like the Linux kernel where CII can satisfy itself
there’s a need, a dozen others never even make its radar.

The prospect of being flat broke with treatment for a serious injury unfinished
concentrates the mind wonderfully. I’ve invented a solution not just for my own
troubles but for LBIPs in general. It’s the Loadsharers network.

Loadsharers is a social network that has agreed to fund LBIPs through remittance
services like Patreon, SubscribeStar, Liberapay and PayPal.

People with the most direct incentive to join Loadsharers are those in the tech
industries and adjacent who have some grasp of how dependent their jobs and their
nice lives are on critical open-source infrastructure. If you are one of those people—
and, as a reader of LJ you almost certainly are—you should consider Loadsharers to
be not mere altruism but a kind of risk insurance.

Loadsharers take the following pledge:

“While I am gainfully employed, I will remit at least $30 a month to one, two, or three
LBIPs, preferably three.” (It is understood that $30 may need to be inflation-adjusted
in the future—it’s the cost of one moderately priced restaurant meal.)

Because discovering where to direct support most efficiently isn’t easy, the
Loadsharers network has a tier of advisers (experienced LBIPs themselves) who
collect information on worthy people and projects from the network and make
recommendations about good targets.

Distributed discovery means that as many eyes as there are Loadsharers are on

https://www.linuxjournal.com

25 | August 2019 | https://www.linuxjournal.com

UPFRONT

the problem of identifying potential LBIPs; the advisers then can apply their expert
knowledge to suggest priorities. Three-way fanout should avoid the problem of having
all the funding be captured by a few high-visibility people.

Every Loadsharer has total control of where his or her money goes at all times, and
loadsharers can choose which advisers to follow (or to follow none). This avoids the
organizational-capture problem.

As I write this, the Loadsharers network is still small. At present growth rates, it’s
likely to be in the low three digits when you read this. That’s only a start; it needs
to scale up from there by about a factor of a thousand, which, actually, should be
readily achievable.

Here is how the numbers look. 160 Loadsharers can cover $5K per month basic
maintenance for one LBIP. That means the need for Loadsharers should start to top
out at about 160K. But in the US alone, there are around 7 million people with jobs in
the technology sector that are directly dependent on LBIP work. That means we just
need less than 3% of US tech workers to become Loadsharers to cover the problem,
even leaving out the rest of the world.

Now consider the social and political effects if Loadsharers scaled up fully. Wouldn’t
you like to have an internet that’s less beholden to the mercy of large corporations
and governments? Loadsharers would create a tier of maintainer/engineers answerable
only to the individuals who might choose to fund them. A second-order effect would
be to create a counterweight against special-interest domination of organizations like
ICANN and the IETF.

Even if you don’t care that a lot of LBIPs are hardship cases, that might be a sufficient
reason to join up right there.

Here’s how you can help. Go to loadsharers.net, read our goals and FAQ to be sure
you agree, and then, take the pledge. Find three LBIPs through our advisor pages and
start funding them immediately.

https://esr.gitlab.io/loadsharers/
https://www.linuxjournal.com

26 | August 2019 | https://www.linuxjournal.com

UPFRONT

Some optional things:

• Join the feeds of one or more advisers, on whatever remittance service they’re
using, so you can use their on-the-ground knowledge to identify worthy LBIPs.

• Identify a potential LBIP so we know who to fund. Or you can update our
information on candidate LBIPs. Tell an adviser so he or she can spread the word.

• Send me email telling me you’re joining up, with a link to your contributor page or
pages. I’m keeping an honor roll of early contributers.

• Explain to your friends why they should become loadsharers too.

That last part—getting the word out
to others—is really important. Until
we’ve scaled up enough to support
multiple LBIPs, Loadsharers will be
a cute hack but not yet a solution.
But pulling together, we can make it
work. And, the civilization you save
might be your own.

—Eric S. Raymond

https://www.linuxjournal.com
http://www.storix.com/linux

27 | August 2019 | https://www.linuxjournal.com

UPFRONT

Reality 2.0: a Linux
Journal Podcast
Join us each week as Doc Searls and Katherine Druckman navigate the realities of the
new digital world: https://www.linuxjournal.com/podcast.

https://www.linuxjournal.com/podcast
https://www.linuxjournal.com

28 | August 2019 | https://www.linuxjournal.com

UPFRONT

News Briefs
• Akraino Edge Stack Release 1.0 is now available. Light Reading reports that

“Akraino’s premiere release unlocks the power of intelligent edge with deployable,
self-certified blueprints for a diverse set of edge use cases.” In addition, “Akraino
R1 delivers the first iteration towards new levels of flexibility to scale edge cloud
services quickly, maximize efficiency, and deliver high availability for deployed
services. It delivers a deployable and fully functional edge stack for edge use cases
ranging from Industrial IoT, Telco 5G Core & vRAN, uCPE, SDWAN, edge media
processing, and carrier edge media processing. As the premiere release, it opens
doors to further enhancements and development to support edge infrastructure.”
For more information, go to https://www.lfedge.org.

• MariaDB announced the release of MariaDB Enterprise Server 10.4, “code-
named ‘Restful Nights’ for the peace of mind it brings enterprise customers”.
The press release notes that this version “is a new, hardened and secured Server
(different from MariaDB Community Server aka MariaDB Server) and has
never been available before. MariaDB Enterprise Server 10.4 includes features
not available in the community version that are focused on solving enterprise
customer needs, providing them with greater reliability, stability and long-term
support in production environments.”

• KDE launched the latest version of its desktop environment, Plasma 5.16. This
release features many changes, such as a completely rewritten notification system
including a Do Not Disturb Mode, themes have been greatly improved, widgets
have been modernized, and now when any app accesses your microphone, an
icon appears in the system tray to warn you. In addition, “Plasma 5.16 is also
spectacular to look at, with our new wallpaper called Ice Cold. Designed by
Santiago Cézar, it is the winner of a contest with more than 150 entries.” See the
Release Announcement and Complete Changelog for all the details.

• Slimbook, the Spanish Linux computer company, just unveiled a brand-new

Visit LinuxJournal.com for
daily news briefs.

https://www.lightreading.com/the-edge/akraino-edge-stack-hits-release-10/d/d-id/752037
https://www.lfedge.org/
https://mariadb.com/
https://dot.kde.org/2019/06/11/plasma-516-kde-now-available
https://kde.org/announcements/plasma-5.16.0.php
https://kde.org/announcements/plasma-5.15.5-5.16.0-changelog.php
http://linuxjournal.com
https://www.linuxjournal.com

29 | August 2019 | https://www.linuxjournal.com

UPFRONT

29 | August 2019 | https://www.linuxjournal.com

all-in-one Linux PC called the “Apollo”. It has a 23.6-inch IPS LED display with
a 1920x1080 resolution, and a choice between an Intel i5-8500 and i7-8700
processors. It comes with up to 32GB of RAM and integrated Intel UHD 630 4K
graphics. Pricing starts at $799.

• Security researchers over at Netflix uncovered some troubling security
vulnerabilities inside the Linux (and FreeBSD) TCP subsystem, the worst of
which is being called SACK. It can permit remote attackers to induce a kernel panic
from within your Linux operating system. Patches are available for affected Linux
distributions. See Beta News for details.

• Konstantin Ryabitsev announced the launch of people.kernel.org to replace
Google+ for kernel developers. people.kernel.org is “an ActivityPub-enabled
federated platform powered by WriteFreely and hosted by very nice and
accommodating folks at write.as.” Initially the service is being rolled out to those
listed in the kernel’s MAINTAINERS file. See the about page for more information.

• GitLab 12.0 was released. From the announcement: “GitLab 12.0 marks a key
step in our journey to create an inclusive approach to DevSecOps, empowering
“everyone to contribute”. For the past year, we’ve been on an amazing journey,
collaborating and creating a solution that brings teams together. There have been
thousands of community contributions making GitLab more lovable. We believe
everyone can contribute, and we’ve enabled cross-team collaboration, faster
delivery of great code, and bringing together Dev, Ops, and Security.”

• Nextcloud announced a new collaborative rich text editor called Nextcloud Text.
Nextcloud Text is described as not “a replacement to a full office suite, but rather
a distraction-free, focused way of writing rich-text documents alone or together
with others.” See the Nextcloud blog post for more details.

• The Linux Mint folks announced that they’re working with Compulab again on
the next MintBox mini, the most powerful MintBox ever. MintBox 3 will be based
on Airtop 3. The release date has yet to be announced. The unfinalized specs are

https://www.omgubuntu.co.uk/2019/06/slimbooks-new-all-in-one-linux-pc-looks-pretty-familiar
https://thenextweb.com/security/2019/06/17/netflix-fixes-potentially-devastating-linux-sack-vulnerability
https://thenextweb.com/security/2019/06/17/netflix-fixes-potentially-devastating-linux-sack-vulnerability
https://betanews.com/2019/06/18/linux-sack-panic
https://people.kernel.org/monsieuricon/introducing-people-kernel-org
https://writefreely.org/
https://write.as/
https://people.kernel.org/about
https://about.gitlab.com/2019/06/22/gitlab-12-0-released/
https://cloud.nextcloud.com/s/4Bi8CMtKLDe2otY
https://blog.linuxmint.com/?p=3766
https://www.linuxjournal.com

30 | August 2019 | https://www.linuxjournal.com

UPFRONT

30 | August 2019 | https://www.linuxjournal.com

listed as: “1. Basic configuration: $1543 with a Core i5 (6 cores), 16 GB RAM, 256
GB EVO 970, Wi-Fi and FM-AT3 FACE Module. 2. High end: $2698 with Core i9,
GTX 1660 Ti, 32 GB RAM, 1TB EVO 970, WiFi and FM-AT3 FACE Module.”

• Tutanota launched a fully encrypted free calendar. Matthias Pfau, co-founder
and developer of Tutanota, says this of the new calendar: “With our encryption
expertise, we have not only made sure that all data people enter is encrypted, we
are also encrypting the notifications for upcoming events. In contrast to other
calendar services (e.g. Google), we do not know when, where, and with whom
people have an appointment. Basically, we as the provider remain completely blind
to people’s daily habits.” See the Tutanota Blog for more information.

• Valve launched Steam Labs, which gives users a peek at new experiments in
development. According to TechCrunch, “Valve is quick to point out that all of
these experiments are just that—there’s no promising that any of the stuff that
hits the Labs will make it all the way to the official client. They also say that even
‘Steam Labs is itself an experiment’, which will probably change and evolve a
bunch over time.” The first three experiments on Steam Labs are Micro Trailers,
Interactive Recommender and Automatic Show.

• The Bank of England announced that Alan Turing will be on the new £50 note in
the UK. Gizmodo quotes Bank of England Governor Mark Carney: “Why Turing?
Turing was an outstanding mathematician whose works had an enormous impact
on how we live today. As the father of computer science and artificial intelligence,
Alan Turing’s contributions were far-ranging and path-breaking. His genius lay in
a unique ability to link the philosophical and the abstract with the practical and
the concrete. And all around us his legacy continues to build. Turing is a giant on
whose shoulders so many now stand.”

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://tutanota.com/blog/posts/free-encrypted-calendar/
https://www.phoronix.com/scan.php?page=news_item&px=Valve-Steam-Labs
https://techcrunch.com/2019/07/11/steam-labs-lets-you-peek-into-valves-experimental-projects/
https://gizmodo.com/computer-science-legend-alan-turing-to-appear-on-new-5-1836371758
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

Thanks to Sponsor
PULSEWAY

for Supporting Linux Journal

Want to see your company's logo here?
Find out more, https://www.linuxjournal.com/sponsors.

System Management
at Your Fingertips.

www.pulseway.com

https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
http://www.pulseway.com
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors
https://www.linuxjournal.com/sponsors

32 | August 2019 | https://www.linuxjournal.com

RV Offsite
Backup Update
Having an offsite backup in your RV is great, and
after a year of use, I’ve discovered some ways to
make it even better.

By Kyle Rankin

Last year I wrote a feature-length article on the data backup
system I set up for my RV (see Kyle’s “DIY RV Offsite Backup
and Media Server” from the June 2018 issue of LJ). If you
haven’t read that article yet, I recommend checking it out first
so you can get details on the system. In summary, I set up a
Raspberry Pi media center PC connected to a 12V television
in the RV. I connected an 8TB hard drive to that system and
synchronized all of my files and media so it acted as a kind of
off-site backup. Finally, I set up a script that would attempt to
sync over all of those files from my NAS whenever it detected
that the RV was on the local network. So here, I provide an
update on how that system is working and a few tweaks I’ve
made to it since.

What Works
Overall, the media center has worked well. It’s been great to
have all of my media with me when I’m on a road trip, and my
son appreciates having access to his favorite cartoons. Because
the interface is identical to the media center we have at home,
there’s no learning curve—everything just works. Since the

Kyle Rankin is a Tech Editor
and columnist at Linux
Journal and the Chief Security
Officer at Purism. He is the
author of Linux Hardening
in Hostile Networks, DevOps
Troubleshooting, The Official
Ubuntu Server Book, Knoppix
Hacks, Knoppix Pocket
Reference, Linux Multimedia
Hacks and Ubuntu Hacks, and
also a contributor to a number
of other O’Reilly books.
Rankin speaks frequently
on security and open-
source software including at
BsidesLV, O’Reilly Security
Conference, OSCON, SCALE,
CactusCon, Linux World Expo
and Penguicon. You can follow
him at @kylerankin.

HACK AND /

https://www.linuxjournal.com/content/diy-rv-offsite-backup-and-media-server
https://www.linuxjournal.com/content/diy-rv-offsite-backup-and-media-server
https://www.linuxjournal.com

HACK AND /

Raspberry Pi is powered off the TV in the RV, you just need to turn on the TV and
everything fires up.

It’s also been great knowing that I have a good backup of all of my files nearby. Should
anything happen to my house or my main NAS, I know that I can just get backups
from the RV. Having peace of mind about your important files is valuable, and it’s
nice knowing in the worst case when my NAS broke, I could just disconnect my USB
drive from the RV, connect it to a local system, and be back up and running.

The WiFi booster I set up on the RV also has worked pretty well to increase the range
of the Raspberry Pi (and the laptops inside the RV) when on the road. When we get
to a campsite that happens to offer WiFi, I just reset the booster and set up a new
access point that amplifies the campsite signal for inside the RV. On one trip, I even
took it out of the RV and inside a hotel room to boost the weak signal.

Room for Improvement
For the most part, I leave my RV plugged in when I’m at home, but because the
Raspberry Pi is powered off the TV, I don’t necessarily leave it on all the time. Every
week or so, I tend to turn it on for a day or two to make sure that files are in sync,
but I realize it would be a lot better if I just left the Raspberry Pi on independent
from the TV. Even though OSMC boots up quickly on the Raspberry Pi, it would
be pretty nice for it to be ready to go the moment I turned on the TV. Since the
Raspberry Pi doesn’t draw much power when idle, I don’t really need to worry
about it draining my house batteries if I leave it on at home—especially since the
RV is typically plugged in at home.

The WiFi booster works, but by default, it just adds “_8C” to the remote access
point’s SSID. It also, by default, reuses the remote access point’s password. This
means you risk other people nearby using your access point, thinking it’s one of
the official repeaters. I’ve taken to changing the default SSID it picks to something
custom to me, but unfortunately so far, I haven’t found a way in the interface
to give my boosted AP a different password, which means that even if I pick a
consistent SSID for my WiFi booster, I still have to reconfigure laptops and the

33 | August 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

HACK AND /

Raspberry Pi to use a different password.

I’ve started to wonder whether it might make more sense to connect a higher-
powered USB WiFi card with an external antenna to the Raspberry Pi and turn
it into the repeater instead. Then I could use the OSMC interface to connect to
remote access points and route connections over the access point I set up on the
Raspberry Pi.

Another issue I’ve run into when on long road trips is that while I’m the road, my RV is
no longer in sync with my home NAS. That means if any new media shows up on my
home NAS, I won’t have it on the road. For example, if I followed a lot of podcasts and
stored them on my NAS, it would be nice if new ones would also show up on my RV
when I’m on the road.

Syncing from the Road
I was planning to take an epic multi-week road trip across America, and I realized a
simple way I could make sure I had new media with me on the road—a VPN. These
days, many people think of VPNs just in the context of security and privacy as a way to
protect their systems from snooping by their ISP or from a local coffee shop they are
connected to. VPNs though are just a way for you to connect two trusted networks
securely over a potentially untrusted network. This is exactly what I needed for my RV.

By having a VPN connection between my Raspberry Pi and my home NAS, it could
connect to my home network wherever it was out in the world, provided it had a
WiFi connection. What’s more, since OpenVPN can be configured to assign clients
a consistent IP when they connect, once I set it up, all I had to do on the server side
was modify a local hosts entry to point to the VPN IP instead of the RV’s normal IP on
the local network, and the sync script could stay the same.

I already had set up a simple local Puppet server on my home network and added a
module to manage my VPN configuration, so it was relatively simple to add a new
client for my RV and generate a set of keys and configuration files. On the RV side,
I just copied over that client key and configuration, and I made sure that OpenVPN

34 | August 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

HACK AND /

was installed on the RV’s Raspberry Pi. Finally, I edited the /etc/default/openvpn file
to make sure my client configuration was set up to start by default, and I also used
systemctl to enable that OpenVPN client so it started at boot.

Once I set up the VPN, I confirmed that the sync script still worked over the new VPN
IP while I was on my home network. The great thing about OpenVPN clients is that
they are persistent—if a connection drops, it continually will try to reconnect. This
meant that once the Raspberry Pi was connected to a WiFi access point, it was just a
matter of time before the VPN connection was restored.

We finally took our epic summer road trip, and about a week into it, we realized
there was some new media at home we’d like to have in the RV. We happened
to be at a campsite that offered WiFi, so when we camped there that evening,
before we went to bed, I reconnected the Raspberry Pi so it was powered off
a 12V USB adapter instead of the TV. That way, I could leave it on overnight
without the glow from the TV making it hard to sleep. I logged in to my NAS at
home and confirmed I could ssh in to my RV from there and then went to bed.
When I woke up, I checked the media center, and sure enough, new files had
been copied over to the RV overnight while we slept!

Oops
This story wouldn’t be complete though without a mistake. At some point in our
previous travels, I had connected the Raspberry Pi to my cell phone’s tethering plan,
and it had remembered that access point. We happened to be at another campground
that offered WiFi, so I decided to leave the Raspberry Pi on overnight again to get
synced back up. Unfortunately, the WiFi at the campsite didn’t work, and so we had
been tethering our laptops off of my phone. When I went to bed that night, I forgot
to disable tethering on my phone, and when I woke up that morning, I discovered the
phone’s battery was completely drained!

The moment I realized the battery was drained, I realized what had happened. I
checked my data plan, and sure enough, I had a huge spike over the past evening. The
Raspberry Pi had remembered that access point, had tethered over my cell phone,

35 | August 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

36 | August 2019 | https://www.linuxjournal.com

HACK AND /

and it had synced a bunch of media over while we were sleeping! Fortunately, even
though my plan is metered, it has a cap in place that converts into “unlimited mode”
once you use a certain amount of data, but if that hadn’t been in place, it would
have been a disaster. Suffice it to say, I went into the Raspberry Pi configuration and
removed that access point so it wouldn’t happen again.

Conclusion
I’ve been very pleased with using my RV media center as an offsite backup, and with
the addition of a VPN, it’s been even better to have new media while I’m on the road.
I just need to find a cost-effective way to keep the Raspberry Pi on and online without
racking up a huge cell-phone bill, and then I’ll truly have an always-up-to-date off-site
backup. Since my last road trip, I’ve thought of a number of improvements to this
setup, so stay tuned for future articles where I’ll describe even more updates. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

37 | August 2019 | https://www.linuxjournal.com

UPFRONT
AT THE FORGE

Understanding
Python’s
asyncio
How to get started using Python’s asyncio.

By Reuven M. Lerner

Earlier this year, I attended PyCon, the international Python
conference. One topic, presented at numerous talks and
discussed informally in the hallway, was the state of threading in
Python—which is, in a nutshell, neither ideal nor as terrible as
some critics would argue.

A related topic that came up repeatedly was that of “asyncio”,
a relatively new approach to concurrency in Python. Not only
were there formal presentations and informal discussions about
asyncio, but a number of people also asked me about courses
on the subject.

I must admit, I was a bit surprised by all the interest. After all,
asyncio isn’t a new addition to Python; it’s been around for a
few years. And, it doesn’t solve all of the problems associated
with threads. Plus, it can be confusing for many people to get
started with it.

And yet, there’s no denying that after a number of years when
people ignored asyncio, it’s starting to gain steam. I’m sure part

AT THE FORGE

Reuven Lerner teaches
Python, data science and Git
to companies around the
world. You can subscribe
to his free, weekly “better
developers” e-mail list, and
learn from his books and
courses at http://lerner.co.il.
Reuven lives with his wife and
children in Modi’in, Israel.

http://lerner.co.il/
https://www.linuxjournal.com

38 | August 2019 | https://www.linuxjournal.com

AT THE FORGE

of the reason is that asyncio has matured and improved over time, thanks in no small
part to much dedicated work by countless developers. But, it’s also because asyncio
is an increasingly good and useful choice for certain types of tasks—particularly tasks
that work across networks.

So with this article, I’m kicking off a series on asyncio—what it is, how to use it,
where it’s appropriate, and how you can and should (and also can’t and shouldn’t)
incorporate it into your own work.

What Is asyncio?
Everyone’s grown used to computers being able to do more than one thing at a
time—well, sort of. Although it might seem as though computers are doing more than
one thing at a time, they’re actually switching, very quickly, across different tasks.
For example, when you ssh in to a Linux server, it might seem as though it’s only
executing your commands. But in actuality, you’re getting a small “time slice” from
the CPU, with the rest going to other tasks on the computer, such as the systems
that handle networking, security and various protocols. Indeed, if you’re using SSH to
connect to such a server, some of those time slices are being used by sshd to handle
your connection and even allow you to issue commands.

All of this is done, on modern operating systems, via “pre-emptive multitasking”.
In other words, running programs aren’t given a choice of when they will give up
control of the CPU. Rather, they’re forced to give up control and then resume a
little while later. Each process running on a computer is handled this way. Each
process can, in turn, use threads, sub-processes that subdivide the time slice given
to their parent process.

So on a hypothetical computer with five processes (and one core), each process
would get about 20% of the time. If one of those processes were to have four
threads, each thread would get 5% of the CPU’s time. (Things are obviously more
complex than that, but this is a good way to think about it at a high level.)

Python works just fine with processes via the “multiprocessing” library. The problem

https://www.linuxjournal.com

39 | August 2019 | https://www.linuxjournal.com

AT THE FORGE

with processes is that they’re relatively large and bulky, and you cannot use them for
certain tasks, such as running a function in response to a button click, while keeping
the UI responsive.

So, you might want to use threads. And indeed, Python’s threads work, and they work
well, for many tasks. But they aren’t as good as they might be, because of the GIL
(the global interpreter lock), which ensures that only one thread runs at a time. So
sure, Python will let you run multithreaded programs, and those even will work well
when they’re doing lots of I/O. That’s because I/O is slow compared with the CPU and
memory, and Python can take advantage of this to service other threads. If you’re
using threads to perform serious calculations though, Python’s threads are a bad idea,
and they won’t get you anywhere. Even with many cores, only one thread will execute
at a time, meaning that you’re no better off than running your calculations serially.

The asyncio additions to Python offer a different model for concurrency. As with
threads, asyncio is not a good solution to problems that are CPU-bound (that is, that
need lots of CPU time to crunch through calculations). Nor is it appropriate when you
absolutely must have things truly running in parallel, as happens with processes.

But if your programs are working with the network, or if they do extensive I/O, asyncio
just might be a good way to go.

The good news is if it’s appropriate, asyncio can be much easier to work with
than threads.

The bad news is you’ll need to think in a new and different way to work with asyncio.

Cooperative Multitasking and Coroutines
Earlier, I mentioned that modern operating systems use “pre-emptive multitasking” to
get things done, forcing processes to give up control of the CPU in favor of another
process. But there’s another model, known as “cooperative multitasking”, in which the
system waits until a program voluntarily gives up control of the CPU. Hence the word
“cooperation”—if the function decided to perform oodles of calculations, and never

https://www.linuxjournal.com

40 | August 2019 | https://www.linuxjournal.com

AT THE FORGE

gives up control, then there’s nothing the system can do about it.

This sounds like a recipe for disaster; why would you write, let alone run, programs
that give up the CPU? The answer is simple. When your program uses I/O, you can
pretty much guarantee that you’ll be waiting around idly until you get a response,
given how much slower I/O is than programs running in memory. Thus, you can
voluntarily give up the CPU whenever you do something with I/O, knowing that soon
enough, other programs similarly will invoke I/O and give up the CPU, returning
control to you.

In order for this to work, you’re going to need all of the programs within this
cooperating multitasking universe to agree to some ground rules. In particular, you’ll
need them to agree that all I/O goes through the multitasking system, and that none
of the tasks will hog the CPU for an extended period of time.

But wait, you’ll also need a bit more. You’ll need to give tasks a way to stop executing
voluntarily for a little bit, and then restart from where they left off.

This last bit actually has existed in Python for some time, albeit with slightly different
syntax. Let’s start the journey and exploration of asyncio there.

A normal Python function, when called, executes from start to finish. For example:

def foo():
 print("a")
 print("b")
 print("c")

If you call this, you’ll see:

a
b
c

https://www.linuxjournal.com

41 | August 2019 | https://www.linuxjournal.com

AT THE FORGE

Of course, it’s usually good for functions not just to print something, but also to
return a value:

def hello(name):
 return f'Hello, {name}'

Now when you invoke the function, you’ll get something back. You can grab that
returned value and assign it to a variable:

s = hello('Reuven')

But there’s a variation on return that will prove central to what you’re doing here,
namely yield. The yield statement looks and acts much like return, but it can be
used multiple times in a function, even within a loop:

def hello(name):
 for i in range(5):
 yield f'[{i}] Hello, {name}'

Because it uses yield, rather than return, this is known as a “generator function”.
And when you invoke it, you don’t get back a string, but rather a generator object:

>>> g = hello('Reuven')
>>> type(g)
generator

A generator is a kind of object that knows how to behave inside a Python for loop.
(In other words, it implements the iteration protocol.)

When put inside such a loop, the function will start to run. However, each time the
generator function encounters a yield statement, it will return the value to the loop
and go to sleep. When does it wake up again? When the for loop asks for the next
value to be returned from the iterator:

https://www.linuxjournal.com

42 | August 2019 | https://www.linuxjournal.com

AT THE FORGE

for s in g:
 print(s)

Generator functions thus provide the core of what you need: a function that runs
normally, until it hits a certain point in the code. At that point, it returns a value to
its caller and goes to sleep. When the for loop requests the next value from the
generator, the function continues executing from where it left off (that is, just after
the yield statement), as if it hadn’t ever stopped.

The thing is that generators as described here produce output, but can’t get any
input. For example, you could create a generator to return one Fibonacci number
per iteration, but you couldn’t tell it to skip ten numbers ahead. Once the generator
function is running, it can’t get inputs from the caller.

It can’t get such inputs via the normal iteration protocol, that is. Generators support a
send method, allowing the outside world to send any Python object to the generator.
In this way, generators now support two-way communication. For example:

def hello(name):
 while True:
 name = yield f'Hello, {name}'
 if not name:
 break

Given the above generator function, you now can say:

>>> g = hello('world')

>>> next(g)
'Hello, world'

>>> g.send('Reuven')
'Hello, Reuven'

https://www.linuxjournal.com

43 | August 2019 | https://www.linuxjournal.com

AT THE FORGE

>>> g.send('Linux Journal')
'Hello, Linux Journal'

In other words, first you run the generator function to get a generator object (“g”)
back. You then have to prime it with the next function, running up to and including
the first yield statement. From that point on, you can submit any value you want to
the generator via the send method. Until you run g.send(None), you’ll continue to
get output back.

Used in this way, the generator is known as a “coroutine”—that is, it has state and
executes. But, it executes in tandem with the main routine, and you can query it
whenever you want to get something from it.

Python’s asyncio uses these basic concepts, albeit with slightly different syntax, to
accomplish its goals. And although it might seem like a trivial thing to be able to send
data into generators, and get things back on a regular basis, that’s far from the case.
Indeed, this provides the core of an entire infrastructure that allows you to create
efficient network applications that can handle many simultaneous users, without the
pain of either threads or processes.

In my next article, I plan to start to look at asyncio’s specific syntax and how it maps
to what I’ve shown here. Stay tuned. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

44 | August 2019 | https://www.linuxjournal.com

UPFRONT

Bash Shell Games:
Continuing
Development of
the Go Fish! Game
This article picks up where I left off developing the
Go Fish! game and considers ways to cheat.

By Dave Taylor

In my last article, I began describing how to write a simple
Go Fish! game as a shell script. It turns out that there’s not
much complicated in a game where you and another player take
turns asking each other for cards by rank order until a player
gets a full set of four. The play continues until all cards have
been matched up, and the player with the most sets wins—easy
enough. Heck, you’ve probably played it dozens of times with
younger gamers in your family!

Building Out the Functions
I hadn’t gotten too far on the gofish script last time. The code
basically creates a random array that represents a deck of cards
and then allocates seven to each player. A quick run reveals:

$ sh gofish.sh
computer hand:
 2 of Spades
 9 of Spades

Dave Taylor has been hacking
shell scripts on Unix and Linux
systems for a really long time.
He’s the author of Learning
Unix for Mac OS X and
Wicked Cool Shell Scripts.
You can find him on Twitter
as @DaveTaylor, and you can
reach him through his tech
Q&A site Ask Dave Taylor.

WORK THE SHELL

https://www.linuxjournal.com/content/bash-shell-games-lets-play-go-fish
https://www.linuxjournal.com/content/bash-shell-games-lets-play-go-fish
https://www.askdavetaylor.com/
https://www.linuxjournal.com

45 | August 2019 | https://www.linuxjournal.com

WORK THE SHELL

 8 of Spades
 5 of Spades
 6 of Spades
 9 of Clubs
 8 of Diamonds
your hand:
 10 of Spades
 Q of Clubs
 K of Spades
 A of Clubs
 3 of Diamonds
 4 of Hearts
 7 of Hearts

Since suit is irrelevant in Go Fish!, these hands almost could be summarized as just
2,5,6,8,8,9,9 and 3,4,7,10,Q,K,A. That’s actually helpful, because it reveals how to
proceed with the basics of the interactive code portion. Specifically, you can’t ask for
a card unless you already have one in your hand.

Getting this to work actually involves rather a lot of modifications to the script. First,
each player’s hand now has 52 slots. The worst-case scenario is a player can have 15
or more cards (imagine having lots of three of a kinds, waiting for the fourth to show
up in the deck).

But more than that, you don’t want to know the computer’s hand—that’s called
cheating—so that needs to be tweaked too.

To start, here’s how the computer and player hands are “dealt”:

function dealCards
{
 # start with seven cards deal to each player

https://www.linuxjournal.com

46 | August 2019 | https://www.linuxjournal.com

WORK THE SHELL

 i=1

 while [$i -lt 8] ; do # first 8 slots = cards
 myhand[$i]=${newdeck[$i]}
 yourhand[$i]=${newdeck[$(($i + 7))]}
 i=$(($i + 1))
 done

 while [$i -le 52] ; do # all other slots empty
 myhand[$i]=-1
 yourhand[$i]=-1
 i=$(($i + 1))
 done
}

The first block deals card 1 to the computer and card 1+7 to the player, then 2 and
2+7, and so on, until seven cards are in each hand. From this point, all available slots
in both the myhand and yourhand arrays are set to -1 to indicate they’re empty.

Your hand, at any time, can be shown with the function showHands. Add an argument,
and it’ll show both hands (yes, handy for cheating), but without it, the following few
lines of code are all that’s invoked:

echo "Your Hand:"
for i in {1..52} ; do
 if [${yourhand[$i]} -gt 0] ; then
 showCard ${yourhand[$i]} ; echo " $cardname"
 fi
done

You can see that each time the hand is analyzed, all 52 slots are examined. Is that
efficient? No. Does it matter on modern hardware? No.

https://www.linuxjournal.com

47 | August 2019 | https://www.linuxjournal.com

WORK THE SHELL

The next and perhaps most important function is to convert the common one-letter
abbreviations for face cards and other special cards into their corresponding numeric
value—a perfect use for a Bash case statement:

case $1 in
 j|J) fixedrequest=11 ;;
 q|Q) fixedrequest=12 ;;
 k|K) fixedrequest=13 ;;
 a|A) fixedrequest=1 ;;
 *) fixedrequest=$1 ;;
esac

Don't ask me why the end of a case statement is the only place in all of the Bash
shell where a word is used backwards (well, other than fi to end an if statement,
I suppose). It’s just odd.

Asking for Cards
Now you can (finally) have a loop that lets users specify what card they want to ask
for and checks to verify that they already have at least one of that card in their hand
(recall that the rules of Go Fish! require you to have a card from a given rank before
you can request more):

function doYouHave
{
 # check if you have the card rank you're asking for

 for i in {1..52} ; do
 if [$((${yourhand[$i]} % 13)) -eq $1] ; then
 return 1
 fi
 done
 return 0
}

https://www.linuxjournal.com

48 | August 2019 | https://www.linuxjournal.com

WORK THE SHELL

Key to remember with the above code snippet is that the card value % 13 = card rank,
so all the complexity above is simply comparing cards against the requested card ($1).
Once there’s a match, you’re done, and return true (value = 1), and if you fall out of
the loop after testing all 52 possible card slots for yourhand, it returns false.

Using the return code and testing function call results is a really common way to
accept return values from functions in shell scripts. Why? Because there aren’t more
sophisticated function parameter mechanisms like more sophisticated programming
languages have. I miss them, but you’ve got to work with what Bash gives you.

How does this look in a query loop asking players what they want to ask the
computer? It looks like this:

echo -n "You ask me if I have a: "
read request
fixFacecards $request

doYouHave $fixedrequest

if [$? -eq 1] ; then
 echo "you have $request you can ask"
else
 echo "you don't have $request, you can't ask for it"
fi

The echo command is, of course, the standard way to push out information to
users, but add the -n flag, and it skips the usual CR/LF at the end of the output.
The result is that that the cursor sits on the same line as what was output. That’s
perfect for input:

You ask me if I have a: [cursor]

Problem: if the user types in something like king of hearts, it’s going to fail, and

https://www.linuxjournal.com

WORK THE SHELL

there’s no error code to prevent an ugly error situation. Robust code is good, but this
is a prototype, so it can defer a more sophisticated parsing system until the last phase
of development. When the time comes, however, let’s also not forget to allow the
user to type quit to end the game.

Go back to the code block above. The fixFacecards function is what ensures that
users can type a “J” or “A” or similar, however. Then doYouHave is invoked with the
numerical rank value to test against your own hand, not that of the computer player.
The result is tucked neatly into the function return value, and that’s accessible with
the $? special variable notation.

This means that if [$? -eq 1] ; then is the same as saying “if the
function returns true”, which means that yes, you do have at least one card of

W E B I N A R | O N D E M A N D

S e c u r i n g Y o u r

A p p l i c a t i o n s A c r o s s t h e

D e v S e c O p s L i f e c y c l e

Watch Now www.linuxjournal.com/twistlock

http://www.linuxjournal.com/twistlock

50 | August 2019 | https://www.linuxjournal.com

WORK THE SHELL

the rank you’re requesting.

Let’s do a quick test:

$ sh gofish.sh
Your Hand:
 5 of Clubs
 6 of Diamonds
 3 of Spades
 9 of Spades
 9 of Clubs
 2 of Hearts
 3 of Hearts
You ask me if I have a: J
you don't have J, you can't ask for it
You ask me if I have a: 3
you have 3 you can ask
You ask me if I have a:

Looks good! There’s still a lot of work to do, however, but let’s stop here and pick up
the development in another article. Meanwhile, here’s a homework assignment for
you: find someone and go through a few games of Go Fish! to see how it plays out in
real life. ◾

Send comments or feedback
via https://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

51 | August 2019 | https://www.linuxjournal.com

diff -u

What’s New
in Kernel
Development
By Zack Brown

Documenting Proper Git Usage
Jonathan Corbet wrote a document for inclusion in the kernel
tree, describing best practices for merging and rebasing git-
based kernel repositories. As he put it, it represented workflows
that were actually in current use, and it was a living document
that hopefully would be added to and corrected over time.

The inspiration for the document came from noticing how
frequently Linus Torvalds was unhappy with how other
people—typically subsystem maintainers—handled their git trees.

It’s interesting to note that before Linus wrote the git tool,
branching and merging was virtually unheard of in the Open
Source world. In CVS, it was a nightmare horror of leechcraft
and broken magic. Other tools were not much better. One of
the primary motivations behind git—aside from blazing speed—
was, in fact, to make branching and merging trivial operations—
and so they have become.

One of the offshoots of branching and merging, Jonathan
wrote, was rebasing—altering the patch history of a local
repository. The benefits of rebasing are fantastic. They can

diff -u

Zack Brown is a tech
journalist at Linux Journal
and Linux Magazine, and is a
former author of the “Kernel
Traffic” weekly newsletter
and the “Learn Plover”
stenographic typing tutorials.
He first installed Slackware
Linux in 1993 on his 386 with
8 megs of RAM and had his
mind permanently blown by
the Open Source community.
He is the inventor of the
Crumble pure strategy board
game, which you can make
yourself with a few pieces
of cardboard. He also enjoys
writing fiction, attempting
animation, reforming
Labanotation, designing
and sewing his own clothes,
learning French and spending
time with friends‘n’family.

https://www.linuxjournal.com

52 | August 2019 | https://www.linuxjournal.com

diff -u

make a repository history cleaner and clearer, which in turn can make it easier to track
down the patches that introduced a given bug. So rebasing has a direct value to the
development process.

On the other hand, used poorly, rebasing can make a big mess. For example, suppose
you rebase a repository that has already been merged with another, and then merge
them again—insane soul death.

So Jonathan explained some good rules of thumb. Never rebase a repository that’s
already been shared. Never rebase patches that come from someone else’s repository.
And in general, simply never rebase—unless there’s a genuine reason.

Since rebasing changes the history of patches, it relies on a new “base” version,
from which the later patches diverge. Jonathan recommended choosing a base
version that was generally thought to be more stable rather than less—a new
version or a release candidate, for example, rather than just an arbitrary patch
during regular development.

Jonathan also recommended, for any rebase, treating all the rebased patches as
new code, and testing them thoroughly, even if they had been tested already prior
to the rebase.

“If”, he said, “rebasing is limited to private trees, commits are based on a well-known
starting point, and they are well tested, the potential for trouble is low.”

Moving on to merging, Jonathan pointed out that nearly 9% of all kernel commits
were merges. There were more than 1,000 merge requests in the 5.1 development
cycle alone.

He pointed out in the doc that, although “many projects require that branches in pull
requests be based on the current trunk so that no merge commits appear in the history”,
the kernel had no such requirement. Merges were considered perfectly orderly ways of
doing business, and developers should not try to rebase their branches to avoid merges.

https://www.linuxjournal.com

53 | August 2019 | https://www.linuxjournal.com

diff -u

An interesting thing about kernel development is that the hierarchy of
maintainership tends to favor a hierarchy of git repository maintainers. It’s not
uncommon for one or a few people to manage a branched kernel repository, and
to have developers managing branches of that tree, with other developers in turn
managing branches of those.

For mid-level maintainers, Jonathan pointed out, there are two relevant situations:
merging a tree from lower in the hierarchy into your own and merging your own tree
higher up toward Linus’ top-level tree.

Jonathan recommended that for mid-level maintainers accepting merges from lower
trees, maintainers not seek to hide the merge request and, in fact, should add a
commit message or changelog entry, explaining the patches that went into the merge.

Jonathan also pointed out that the “Signed-Off-By” tags were crucial elements of
commit messages that helped track responsibility as well as important debugging
information. He suggested that all maintainers should continue to use them and to
verify them when merging from other trees. Jonathan said, “Failure to do so threatens
the security of the development process as a whole.”

That advice referred to downstream trees, but Jonathan had some very interesting
points to make about merging from upstream trees. This is when you’re working on
your tree, and you want to make sure you’re up to date with the latest-and-greatest
tree from Linus or someone close to him. Of course, doing so would make your own
life slightly easier, because you’d be up to date, you could test your code against the
tip of the tree, and so on. Still, Jonathan counseled against it.

For one thing, you could be bringing other people’s bugs into your own tree,
destabilizing your test code, and then you’d have the uncertainty of knowing that your
code was actually solid and ready to submit further upstream.

Another temptation is to do a merge from the upstream source right before
submitting your own merge request to ensure that your request won’t encounter any

https://www.linuxjournal.com

54 | August 2019 | https://www.linuxjournal.com

diff -u

conflicts. However, as Jonathan said, “Linus is adamant that he would much rather
see merge conflicts than unnecessary back merges. Seeing the conflicts lets him
know where potential problem areas are. He does a lot of merges (382 in the 5.1
development cycle) and has gotten quite good at conflict resolution—often better
than the developers involved.”

Instead, if you do notice a conflict that will show up when Linus does the merge,
you should say something about it in the pull request, so Linus sees that you see
the situation.

As a last resort, for particularly nutty cases, Jonathan said, you could create another
branch, with your own conflict resolutions, and point Linus to that so he can see how
you’d resolve the problems yourself. The pull request, however, should be for the
unresolved branch.

Doing a test merge in that way is fine, he said. It helps you know if there will be any
conflicts, so you can communicate better to the upstream maintainers.

He offered some more good advice and closed by saying:

The guidelines laid out above are just that: guidelines. There will always be
situations that call out for a different solution, and these guidelines should not
prevent developers from doing the right thing when the need arises. But one
should always think about whether the need has truly arisen and be prepared to
explain why something abnormal needs to be done.

And...Linus replied that he liked the whole doc.

David Rientjes from Google reported that he actually had been in the process of
writing an internal doc for use by Google engineers, discussing this very topic. He was
thrilled that Jonathan had done a better job explaining it than his own effort.

Geert Uytterhoeven also liked the new doc, and he offered some spelling and

https://www.linuxjournal.com

55 | August 2019 | https://www.linuxjournal.com

diff -u

grammar corrections.

Only Theodore Ts’o had any significant criticism to offer. He felt a clear distinction
should be made between reordering patches (which he felt was what most people
thought of when they talked about rebasing), versus actually changing or removing
commits that have already gone into the tree. Both were technically rebasing, yet
both were really quite different operations.

Jonathan replied to this, suggesting that maybe the doc could refer separately to
“rebasing” and “history modification”. And, Ted agreed this would be better.

End of thread. I love seeing this sort of documentation go into the kernel. It’s not
the same as general-purpose git advice, because it’s specific to kernel development
processes and policies that are already in place. At the same time, it’s potentially
very useful to other large-scale projects that might want to mimic the Linux
kernel development process. All open-source projects essentially mimic the kernel
development process anyway—Linus is the one who first discovered and popularized
the methods of how to run an open-source project—and there tends to be a lot of
wisdom in his development policy decisions even now.

Another Episode of “Seems Perfectly Feasible
and Then Dies”—Script to Simplify the Process
of Changing System Call Tables
David Howells put in quite a bit of work on a script, ./scripts/syscall-manage.pl, to
simplify the entire process of changing the system call tables. With this script, it was
a simple matter to add, remove, rename or renumber any system call you liked. The
script also would resolve git conflicts, in the event that two repositories renumbered
the system calls in conflicting ways.

Why did David need to write this patch? Why weren’t system calls already fairly easy to
manage? When you make a system call, you add it to a master list, and then you add
it to the system call “tables”, which is where the running kernel looks up which kernel
function corresponds to which system call number. Kernel developers need to make

https://www.linuxjournal.com

56 | August 2019 | https://www.linuxjournal.com

diff -u

sure system calls are represented in all relevant spots in the source tree. Renaming,
renumbering and making other changes to system calls involves a lot of fiddly little
details. David’s script simply would do everything right—end of story no problemo
hasta la vista.

Arnd Bergmann remarked, “Ah, fun. You had already threatened to add that script in
the past. The implementation of course looks fine, I was just hoping we could instead
eliminate the need for it first.” But, bowing to necessity, Arnd offered some technical
suggestions for improvements to the patch.

However, Linus Torvalds swooped in at this particular moment, saying:

Ugh, I hate it.

I’m sure the script is all kinds of clever and useful, but I really think the solution is
not this kind of helper script, but simply that we should work at not having each
architecture add new system calls individually in the first place.

IOW, we should look at having just one unified table for new system call numbers,
and aim for the per-architecture ones to be for “legacy numbering”.

Maybe that won’t happen, but in the _hope_ that it happens, I really would prefer
that people not work at making scripts for the current nasty situation.

And the portcullis came crashing down.

It’s interesting that, instead of accepting this relatively obvious improvement to
the existing situation, Linus would rather leave it broken and ugly, so that someone
someday somewhere might be motivated to do the harder-yet-better fix. And, it’s all
the more interesting given how extreme the current problem is. Without actually being
broken, the situation requires developers to put in a tremendous amount of care and
effort into something that David’s script could make trivial and easy. Even for such an
obviously “good” patch, Linus gives thought to the policy and cultural implications, and

https://www.linuxjournal.com

57 | August 2019 | https://www.linuxjournal.com

diff -u

the future motivations of other people working in that region of code.

Warnings and Warning Signs—Eliminating Unnecessary
Warning in the Kernel’s Core Driver Code
A minor fix, but an interesting exchange: Thierry Reding posted a patch to the core
driver code to eliminate an unnecessary warning so users wouldn’t get confused and
think it was important.

It all started one day long ago and far away with the probe() function. The kernel
generally calls probe() to trigger a device initialization and get some basic information
about it for use by kernel operations. This generally happens very early in the boot
process, as soon as the device comes online—or later, if it’s a hotplug device.

But some drivers, Thierry pointed out, had to defer the relevant kernel probe()
call until the resources needed by that driver had been initialized. If they didn’t get
initialized—if they were a hotplug device, for example—then the driver that depends
on them might need to defer the probe() call indefinitely. Thierry remarked:

One example of this can be seen on Tegra, where the DPAUX hardware contains
pinmuxing controls for pins that it shares with an I2C controller. The I2C controller is
typically used for communication with a monitor over HDMI (DDC). However, other
instances of the I2C controller are used to access system critical components, such
as a PMIC. The I2C controller driver will therefore usually be a built-in driver, whereas
the DPAUX driver is part of the display driver that is loaded from a module to avoid
bloating the kernel image with all of the DRM/KMS subsystem.

In this particular case the pins used by this I2C/DDC controller become accessible
very late in the boot process. However, since the controller is only used in
conjunction with display, that’s not an issue.

In other words, deferring probe() in this case is perfectly fine, for as long as it takes
for DPAUX actually to come up. The delay should be considered a regular part of
normal kernel operation. As Thierry went on to say, “unfortunately the driver core

https://www.linuxjournal.com

58 | August 2019 | https://www.linuxjournal.com

diff -u

currently outputs a warning message when a device fails to get the pinctrl before the
end of the init stage. That can be confusing for the user because it may sound like an
unwanted error occurred, whereas it’s really an expected and harmless situation.”

Thierry’s patch added a flag to the driver_deferred_probe_check_state() helper
function to let callers indicate they want to continue to defer probe().

Rob Herring liked the patch, and Rafael J. Wysocki offered some constructive
technical criticism.

Greg Kroah-Hartman, on the other hand, was disgruntled.

He and Thierry had apparently had a discussion on this topic before, because he
accused Thierry of not following his requirements. Specifically, Greg had said that
Thierry should not use “odd flags”. He said an earlier version of the patch had used a
boolean flag, and now it used a bitmap. To which he remarked, “That did not make the
api any easier to understand at all.” And Greg concluded, “Anyway, this isn’t ok, do it
correctly please, like I asked for the first time.”

Thierry was unfazed by this rebuke, and he pointed out that Greg had really said “no
boolean flag”, and Thierry had diligently replaced the boolean flag with a bitmap.

Thierry went on, “To avoid further back and forth, what exactly is it that you would
have me do? That is, what do you consider to be the correct way to do this?”

He offered to avoid using flags of any kind and simply rely on function return values.
And, Rafael proposed a set of changes that might accomplish this. The main point
of Rafael’s suggestion is that very clearly named functions would check the state of
a given driver and return a very clear value indicating that yes, indeed, the driver
would continue to defer the probe() call. The idea being that now, no longer might
the error message confuse people at runtime, but the code itself would not confuse
people at development time.

https://www.linuxjournal.com

59 | August 2019 | https://www.linuxjournal.com

diff -u

Greg took a look at Rafael’s suggestion and replied, “Yes, that’s much more sane.
Self-describing apis are the key here, I did not want a boolean flag, or any other flag,
as part of the public api as they do not describe what the call does at all.”

And that was the end of the thread. Presumably, Thierry doesn’t mind the new direction,
as long as his itch gets scratched, and the unnecessary warning no longer appears.

The interesting thing about this exchange is that Greg’s initial requirement was vague,
or at least ambiguous, and Thierry just barrelled ahead, adhering to the letter of it
without guessing at the deeper significance (clear code). Then finally when Greg
got steamed up about it, the opportunity arose to get some clarification from him.
I’m not entirely sure Thierry didn’t implement his patch specifically to draw out that
clarification. Anyway, it did the trick, and the next incarnation of the patch almost
certainly will go straight into the tree.

Note: if you’re mentioned in this article and want to send a response, please send a
message with your response text to ljeditor@linuxjournal.com, and we’ll run it in the next
Letters section and post it on the website as an addendum to the original article.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com
mailto:ljeditor@linuxjournal.com

60 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

DEVOPS

https://www.linuxjournal.com

DEEP
DIVE

DEEP
DIVE

61 | August 2019 | https://www.linuxjournal.com

Experts Attempt to
Explain DevOps—
and Almost Succeed
What is DevOps? How does it relate to other ideas and
methodologies within software development? Linux Journal
Deputy Editor and longtime software developer, Bryan Lunduke
isn’t entirely sure, so he asks some experts to help him better
understand the DevOps phenomenon.

By Bryan Lunduke

The word DevOps confuses me.

I’m not even sure confuses me quite does justice to the pain I experience—right in the
center of my brain—every time the word is uttered.

It’s not that I dislike DevOps; it’s that I genuinely don’t understand what in tarnation
it actually is. Let me demonstrate. What follows is the definition of DevOps on
Wikipedia as of a few moments ago:

DevOps is a set of software development practices that combine software
development (Dev) and information technology operations (Ops) to shorten
the systems development life cycle while delivering features, fixes, and updates
frequently in close alignment with business objectives.

I’m pretty sure I got three aneurysms just by copying and pasting that sentence, and

https://www.linuxjournal.com

I still have no clue what DevOps really is. Perhaps I should back up and give a little
context on where I’m coming from.

My professional career began in the 1990s when I got my first job as a Software Test
Engineer (the people that find bugs in software, hopefully before the software ships,
and tell the programmers about them). During the years that followed, my title, and
responsibilities, gradually evolved as I worked my way through as many software-
industry job titles as I could:

• Automation Engineer: people that automate testing software.

• Software Development Engineer in Test: people that make tools for the testers
to use.

• Software Development Engineer: aka “Coder”, aka “Programmer”.

• Dev Lead: “Hey, you’re a good programmer! You should also manage a few other
programmers but still code just as much as you did before, but, don’t worry, we
won’t give you much of a raise! It’ll be great!”

• Dev Manager: like a Dev Lead, with less programming, more managing.

• Director of Engineering: the manager of the managers of the programmers.

• Vice President of Technology/Engineering: aka “The big boss nerd man who gets to
make decisions and gets in trouble first when deadlines are missed.”

During my various times with fancy-pants titles, I managed teams that included:

• SysOps: used to stand for “System Operator”, a person who ran and
maintained a network accessible system, but now has been redefined as
“System Operations”, which has an utterly confusing definition that nobody
seems to agree on.

DEEP
DIVE

62 | August 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

63 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

• SysAdmins: aka “System Administrators”, which is similar to SysOps, only newer.

• Project Managers: people who document requirements for a project and help
engineers, testers and other people working on a team to ship whatever it is they’re
working on.

All of which is a long way of saying, “I should know what the heck DevOps means.”

But I don’t. I really, really don’t. Maybe it’s a defect in my brain. Perhaps I’m simply
from a different era in the computer industry when different words and ideas were
used. And, clearly, I’m not alone. If you do a Google search for “define DevOps”, you
get more than 43 million results. I’ve clicked on roughly 42 million of them (although
I did the search via DuckDuckGo) and got no closer to understanding the elusive
meaning of this term.

Luckily, I’m in a position to know some pretty doggone smart people who work in
DevOps in one way or another. So I reached out to them with a simple challenge:

“Explain to me what DevOps means. Bonus points for not using any buzz words.”

What followed were wonderful conversations with four “DevOps experts” during the
course of several weeks. To make it all easier to follow for everyone, I’ve taken the
key bits of those conversations and edited them together into one semi-real, semi-
fictional chat with a singular DevOps expert that is a combination of all four of them.

Let’s call him “Ted”.

Note: as we go along, some software engineering terms will be used that some
readers may not be familiar with. When that happens, I’ve included the definition.

Lunduke: Okay, Ted. What is DevOps?

Ted: Wikipedia defines DevOps as “a set of software development practices that

https://www.linuxjournal.com

64 | August 2019 | https://www.linuxjournal.com

combine software development”.

Lunduke: Whoaaa! Gotta stop you right there. I’ve read the Wikipedia entry. I’ve read
articles and the various DevOps yearly reports. I’ve gone to conferences and watched
presentations with slide decks filled with enough buzz words to make my head spin.
Give it to me in your own words.

Ted: Luckily, DevOps is a simple idea. Take Developers and Operations people and
integrate them together.

Lunduke: I assume we’re not talking traditional “Operations” within a company
(supply chain stuff and whatnot)? Chief Operating Officers and the like?

Ted: No. More System Operations. SysAdmin work.

Lunduke: Oh, okay. So it’s Developers working with SysAdmins?

Ted: And QA (testers)—everyone involved in the software development lifecycle
working together to achieve continuous integration and faster releases.

Lunduke: That sounds like Agile. Also, the phrase “continuous integration” causes
physical pain to say—almost as much as “enhancing corporate synergy”.

Wikipedia defines Agile Software Development as follows:

Agile software development is an approach to software development under
which requirements and solutions evolve through the collaborative effort of
self-organizing and cross-functional teams and their customer(s)/end user(s).
It advocates adaptive planning, evolutionary development, early delivery, and
continual improvement, and it encourages rapid and flexible response to change.

Ted: I know, it’s a terrible term, but the idea is still good. As for being like Agile, there
are some similarities, but the focus is different. Agile is more about making it easier

DEEP
DIVE

https://www.linuxjournal.com

65 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

and faster for the engineering teams to work with project managers and customers,
and DevOps is about having the engineering teams working closely with the people
handling all the IT infrastructure required by a project (such as the sysadmins).

Lunduke: So, what I’m hearing is that DevOps is a way of saying “sysadmins and
engineers should talk”. That can’t be right though. That’s too simple (and obvious) of
an idea that has been around since before Jimmy Carter was President (though not
always actually acted upon). There has to be more to it than that; otherwise, there
wouldn’t be entire conferences and companies dedicated to DevOps.

Ted: A lot of ideas and best practices have evolved around DevOps to help make
teams successful, but that really is the basic idea. Sometimes, in the quest for better
integration of the Dev with the Ops, the two get completely merged into the same
time and even the same roles.

Lunduke: That’s such a simple idea (and one that’s existed since before most
computers had a GUI). Why does it need a new term? When I ran my own business, I
wore both dev and sysadmin hats. Technically that made me a DevOps...in retrospect?

Ted: Yep. Technically! But don’t get too hung up on the term. The important part
is the idea and the best practices that help facilitate it. Think of it simply as a set of
ideas and tools to help software run properly in both development and production
environments. It’s also a way of enforcing that engineers are in a place to maintain the
code they produce.

Lunduke: I think a circuit in my brain is getting tripped as I look for something new
here. From what you’re describing, DevOps seems like a basic idea (or small set of
ideas) that have been around for longer than most engineers working today have
been alive. Maybe if you could give me an example of a DevOps-y best practice, that’ll
help me wrap my head around this.

Ted: Sure. One obvious best practice is to publish small, incremental and frequent
changes. Engineers, testers and admins (or DevOps engineers) working together,

https://www.linuxjournal.com

66 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

releasing tiny changes rapidly. This makes each release a little less risky and bug-prone.
And it gets improvements (even if smaller ones) to the users faster.

Lunduke: At the risk of being annoying (I know, it’s too late), that sounds exactly like
Agile Development. Everyone involved in the production working on the same team
(or very closely) to release small, iterative updates on a rapid schedule.

Ted: Except it’s faster than Agile—or it can be. It’s certainly faster than Waterfall.

Wikipedia defines the Waterfall model of software development as follows:

The waterfall model is a breakdown of project activities into linear sequential
phases, where each phase depends on the deliverables of the previous one and
corresponds to a specialization of tasks. In software development, it tends to
be among the less iterative and flexible approaches, as progress flows in largely
one direction (“downwards” like a waterfall) through the phases of conception,
initiation, analysis, design, construction, testing, deployment and maintenance.

Lunduke: But technically, Agile doesn’t have any restrictions on how frequently you
can release. You can do an Agile Sprint every day—heck, every hour—if you want to.

Here’s the Wikipedia definition of Sprint:

A sprint (or iteration) is the basic unit of development in Scrum (a framework
typically used in Agile development). The sprint is a timeboxed effort; that is, it is
restricted to a specific duration. The duration is fixed in advance for each sprint
and is normally between one week and one month, with two weeks being the
most common.

Ted: The Agile vs DevOps debate will rage on for ages. Luckily, the core idea of
DevOps is a helpful one. And the series of best practices that gets exchanged (in
books and conferences and whatnot) really can be helpful for engineering teams.

https://www.linuxjournal.com

67 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Lunduke: I mean, I guess I get it. It still sounds like Agile (to me). Hey, Ted, could you
do me a favor?

Ted: Heh, sure, Lunduke.

Lunduke: Could you tie DevOps into Linux somehow? You know, what with this being
for an article in Linux Journal and all.

Ted: Well, most DevOps people I know run Linux—especially on the server side. Does
that count?

Lunduke: Yes, yes it does. ◾

Bryan Lunduke is a former Software Tester, former Programmer, former VP of Technology, former Linux Marketing Guy
(tm), former openSUSE Board Member... and current Deputy Editor of Linux Journal, Marketing Director for Purism, as
well as host of the popular Lunduke Show. More details: http://lunduke.com.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

http://lunduke.com/
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

DEEP
DIVE

Continuous
Integration/
Continuous
Development
with FOSS Tools
Up your DevOps game! Get the fundamentals of CI/CD
with FOSS tools now!

By Quentin Hartman

One of the hottest topics within the DevOps space is Continuous Integration and
Continuous Deployment (CI/CD). This attention has drawn lots of investment
dollars, and a vast array of proprietary Software As A Service (SaaS) tools have
been created in the CI/CD space, which traditionally has been dominated by free
open-source software (FOSS) tools. Is FOSS still the right choice with the low cost
of many of these SaaS options?

It depends. In many cases, the cost of self-hosting these FOSS tools will be greater
than the cost to use a non-FOSS SaaS option. However, even in today’s cloud-
centric and SaaS-saturated world, you may have good reasons to self-host FOSS.
Whatever those reasons may be, just don’t forget that “Free” isn’t free when it
comes to keeping a service running reliably 24/7/365. If you’re looking at FOSS as a

68 | August 2019 | https://www.linuxjournal.com

https://www.linuxjournal.com

DEEP
DIVE

69 | August 2019 | https://www.linuxjournal.com

means to save money, make sure you account for those costs.

Even with those costs accounted for, FOSS still delivers a lot of value, especially to
small and medium-sized organizations that are taking their first steps into DevOps
and CI/CD. Starting with a commercialized FOSS product is a great middle ground.
It gives a smooth growth path into the more advanced proprietary features,
allowing you to pay for those only once you need them. Often called Open Core,
this approach isn’t universally loved, but when applied well, it has allowed for a lot
of value to be created for everyone involved.

Narrowing the Field
When talking with clients or peers about DevOps concepts, it’s useful to break
things into “lanes” to help simplify the conversation and provide rough boundaries

An Embarrassment of Riches
The DevOps concept exploded in the past several years. The term quickly
saturated the mainstream technology industry. With this increased mindshare
comes a corresponding increase in the number of tools available to accomplish
DevOps-related tasks. That’s a blessing and a curse as a DevOps practitioner.
Thanks to the endless buffet of options, you’re sure to find something that
meets your needs, but to a newcomer, the multitude of choices is overwhelming.
Combine that with the vast scope of tasks that fall under the DevOps umbrella
and the competing claims of “best” from all sides, and you have a recipe for
paralysis. A good place for finding tools and filtering by a variety of criteria is
DevOpsBookmarks.com. The content is all open source, and the maintainers
are diligent about merging contributions, but it hasn’t seen a lot of updates
lately. Despite that, it makes a great jumping off point. If you find something
noteworthy that should be included, a pull request would be appreciated!

http://www.devopsbookmarks.com/
https://www.linuxjournal.com

70 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

for defining where tasks fall or how tools might be applied. At the highest levels,
you have the “infrastructure”, “code” and “visibility” lanes. CI/CD is primarily in the
code lane, with some bits getting into infrastructure and visibility. The topic of CI/CD
breaks down into lanes of “Source Code Management”, “Build/Package/Deployment
Automation” and “Test Automation”.

Most organizations focus their DevOps journey on CI/CD because it has the largest
perceived return on investment and is the one most obviously related to the goal of “get
good code out faster”. By and large, they are right, but they ignore the other lanes at
their peril. Some organizations pour hundreds of thousands of dollars into implementing
CI/CD tools and processes, only to have the whole effort stymied by shortcomings
in the infrastructure lane. Perhaps even worse, multi-month deployment and training
projects bear no fruit, because no one bothers to make sure the tools actually are getting
used. This is where paying attention to your visibility lane comes into play. When doing
DevOps, it’s important to measure and report on as many metrics as you can that are
relevant to your goals. Process and tool adoption metrics are critical to include.

CI/CD Put Simply
CI/CD aims to reduce the amount of time in between when a code change is made
and when it is deployed and in use. The Holy Grail that many on the path of CI/CD
are pursuing is to reduce the time from commit to production down to minutes,
without the need for human intervention along the way. To do this, many types
of automation are employed to test, build, package and deploy code changes. To
really get there though, your application architecture has to be amenable to this
potential rate of change.

Microservices and serverless architectures are two design patterns that can handle
it well, but if your application is a single monolithic service, odds are you won’t get
there without either changing that design first or having remarkably mature test
automation. There will be times though, even in the most mature organizations,
when you actually may not want to deploy a change right when it’s made. For this
reason, some people like to differentiate between “delivery” and “deployment”,
calling the process “CI/CD/CD”.

https://www.linuxjournal.com

71 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Source Code Management
Many Source Code Management (SCM) systems exist. Mercurial, Microsoft Team
Foundation Server and Perforce all come to mind. However, Git has become the de

Focus on What Matters Most
When adopting DevOps practices, the tools are the easy part. That isn’t to say that
selecting and implementing them is objectively “easy”, only that it’s a lot easier than
the accompanying task of making sure that an organization’s culture and processes
are supportive of DevOps practices. When selecting tools, it’s easy to get wrapped
around the axle worrying about doing things “right”. They say “You’re not doing it
right if you don”t have unit tests!”, or “You’re not doing it right if you don’t have
your infrastructure defined in code!”

Don’t be overly worried about “right” until your organization has a fairly mature
DevOps culture in place. Focus on the tools and practices that will give you the
shortest time to value and provide the most quality of life improvement for your
developers and ops people. Writing and maintaining unit tests takes a ton of effort,
and the value it provides often lies in the far future. If you have only a few servers
deployed behind a simple load balancer and that’s not likely to change soon,
automating your infrastructure may not pay. Go for the quickest wins possible in the
beginning. Nothing encourages support like success. Just make sure you do plan to
come back to fill in those gaps. They become more important as your organization
matures. Don’t let perfect get in the way of better.

The biggest payoff is usually found in automating build and deployment, so that’s
the best place for most folks start. Those are tasks that need to be done over and
over as you iterate through the development process, often many times a day.
The sooner the pain of these tasks can be reduced as near as possible to zero, the
happier everyone will be. This is the core of a CI/CD pipeline.

https://www.linuxjournal.com

72 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

facto standard SCM, and GitHub is the dominant management layer people use on top
of it. However, GitHub is not FOSS, so let’s turn to its worthy competitor GitLab CE,
also known as GitLab Core.

The rate at which GitLab has matured and features are added is staggering. GitLab
is licensed under an Open Core model, which means many of those features
exist only in their commercial offering, which is a shame, but an understandable
one. The FOSS offering is still robust enough to be quite compelling though. It
approaches feature parity with GitHub as a Git management tool, and it even
surpasses it by offering a suite of additional DevOps-enabling features, such as
CI/CD orchestration, Slack-like messaging, artifact repositories, tight Kubernetes
integration and even a Function as a Service (FaaS) or “serverless”. But for SCM,
it offers everything you need to perform the core code development management
tasks of branching, reviewing, approving and merging code changes and much
more. A full-feature comparison matrix of the various editions of self-hosted and
GitLab-hosted products is available here.

Other FOSS options exist, but GitLab is probably the place to start since it is mature
and fully featured. One that I’m aware of that is also quite nice is Gitea, which is a very
lightweight implementation of Git done in Go with a nice management interface. It’s
likely most useful if GitLab’s admittedly large system requirements are too much for
your use case.

Build/Package/Deployment Automation
This is where the rubber really meets the road, and where people working on CI/CD
tasks likely will spend the bulk of their energy. The most well known tool in this space
also happens to be FOSS, and that is Jenkins. Thanks in large part to its vast library
of plugins, Jenkins can be much more than a CI/CD tool. It really is a Swiss Army
knife of automation orchestration. The extensibility and flexibility of Jenkins can’t
be overstated. It’s so flexible in fact, that CloudBees, a company that is a significant
contributor to the FOSS project, uses it as the foundation for its primary commercial
offerings. These offerings address some of the shortcomings of Jenkins FOSS,
making it more appealing for very large, enterprise-class deployments.

https://gitlab.com/gitlab-org/gitlab-ce
https://about.gitlab.com/features/
https://gitea.io/
https://jenkins.io/index.html
https://www.cloudbees.com/
https://www.linuxjournal.com

73 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Recently, complaints have started surfacing about Jenkins being “not modern” and
“too hard to manage”, especially when compared to very focused SaaS offerings like
CircleCI or Shippable. Those arguments have some merit. HA isn’t easily possible
without moving to CloudBees, large Jenkins deployments can become unwieldy,
the UI is dated, and its old-school Java roots do show from time to time. However,
much of that can be ameliorated by running the Blue Ocean interface and running
smaller, team-focused deployments in containers. Moving to competing SaaS tools
also would lose a lot of the power that Jenkins brings to the table as a general
automation orchestration tool, which is a role those options don’t fill as well.

GitLab appears in this lane too. GitLab first introduced CI features in 2015, and they
have matured rapidly since then. It has become a well regarded tool in this space
and is a particularly easy choice if you’ve already deployed GitLab for source code
management, as the CI tool is included.

There are several other notables in this space, each with their own particular take
on CI/CD and a different set of strengths and weaknesses. One that is particularly
interesting is Drone, because it aims to be “container native”. It defines pipelines
using YAML very similar to Docker Compose, which should make it accessible to
anyone comfortable using Docker for local development. Like Gitea above, it is
written in Go and has a very light footprint, and so it would be an appropriate choice
for resource-constrained environments.

Test Automation
Test automation is a cornerstone of a true CI/CD pipeline; however, it’s a very
complicated topic. The tools vary by the language in which the application is
written, the nature of the application itself, and even the composition of the team
or teams writing the software. Of all the problems in the CI/CD space, this is the
most challenging one. Not only is it a challenge to decide what to test, it’s difficult
to determine how best to test it. There are unit tests, integration tests, functional
tests, system tests, validation tests, regression tests, black box testing, white box
testing, static code analysis, dynamic code analysis and even open-source license,
compliance and security analysis. The list could continue, opening this space up to

https://jenkins.io/projects/blueocean/
https://drone.io/
https://www.linuxjournal.com

74 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

become another seemingly endless array of choices. In the end though, it is best
to stay focused on answering the question, “Is this code ready to be used?” and
then come up with your own organization’s definition of “ready”. That will help
you make decisions about what kinds of testing you should be doing now, later
and perhaps not at all. As you journey down the road of test automation, your
definition of “ready” likely will become more and more strict, and you’ll iteratively
bring on additional tools to meet the evolving criteria. The most common classes
of automated testing, unit testing, system testing and functional testing are all
great places to start. They all have lots of good FOSS options available.

Hundreds of different unit test frameworks are available, with at least a handful
for nearly every language that has seen any amount of real world use. There is an
incredible list of these frameworks available at Wikipedia. Start your search for
a tool there, or search for “unit testing for $my_language” in your search engine
of choice, and choose one that seems to be actively used and developed, and
one that can be made to integrate with the other tools you intend to use. Many
of them are “xUnit” style, which is a very common model for unit testing. If you
choose one of that type, it’s more likely that your developers will be comfortable
writing tests for it, and there’s a good chance it will create a results report in a
JUnit-compatible XML file. JUnit XML reports are the lingua franca of the unit test
world, and having reports in that format makes it far more likely that whatever tool
you want to record your results in will be able to parse the report.

System testing isn’t quite so tightly defined. Here again is a wide-open problem
space with a multitude of possible solutions that will be heavily influenced by your
particular situation. My preferred starting approach is fairly repeatable and broadly
applicable. Deploy a disposable instance of your application (usually in containers)
and run a load test with a tool like Gatling or Postman to run through the core
functionality of your app quickly. If those tests fail, there’s a good chance you have
an system issue. Postman itself isn’t a FOSS tool, but it is free for most uses, and
the Postman folks release a lot of supporting tools as FOSS and generally seem to
be a good FOSS community members.

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://gatling.io/
https://www.getpostman.com/
https://www.linuxjournal.com

75 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

It’s also worth noting that system testing is often mistakenly called “integration
testing”. Integration testing is a step that would traditionally come between
unit testing and system testing, but one should consider skipping it early in the
adoption of automated testing practices, as it usually provides tangible value only
in very complicated software written by very large teams or composed of the work
from several separate teams.

For functional testing, the standout FOSS tool is Selenium, which forms the
core of many other testing automation tools, both FOSS and commercial. If your
application exposes anything through a webpage, Selenium or something like it
should be in your toolkit.

And finally, all the testing in the world doesn’t mean much if you can’t view the
results. Jenkins can display test results itself, but running Sonarqube adds a lot of
value. Not only does it give you a great view of how your test results have changed
over time, it can perform various kinds of static analysis on your code if you are
using a supported language. It’s another Open-Core-licensed tool, and some very
useful features have been moved into the commercial version recently—perhaps
most notably the ability to track multiple branches of a single codebase easily.

Conclusion
One could use a selection of the tools from each of the lanes listed above and provide
the framework for an effective CI/CD pipeline. The options here are only a few of the
possible choices; however, they are ones with a proven record of delivering value. And
ultimately, that’s the point: getting to value. In the end, that’s what a CI/CD pipeline
is for, delivering value to your users as quickly and smoothly as possible, by reducing
friction within your development and deployment process. And that is an effective
early step in embracing DevOps. ◾

Quentin Hartman is a lifelong technology enthusiast who has been working in one aspect or another of network and system
administration for more than 20 years. The vast majority of that time has been spent using Linux and other FOSS tools to help meet the
needs of organizations large and small. Quentin is currently working as the Director of Infrastructure and DevOps at Finalze where he
helps the team build great software with a soul. He lives near Denver, Colorado, with his wife, three daughters and five chickens. He can
be reached as “qhartman” on twitter.com and keybase.io.

https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Integration_testing
https://www.seleniumhq.org/
https://www.sonarqube.org/
https://www.linuxjournal.com

76 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
• Open Source Business Models Considered Harmful

• DevOps Bookmarks

• GitLab Core

• GitLab Features Matrix

• Gitea

• Jenkins

• CloudBees

• Jenkins Blue Ocean

• Drone

• List of Unit Testing Frameworks (Wikipedia)

• Gatling

• Postman

• Overview of Integration Testing (Wikipedia)

• Selenium

• Sonarqube

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://medium.com/@johnmark/open-source-business-models-considered-harmful-2e697256b1e3
http://www.devopsbookmarks.com/
https://gitlab.com/gitlab-org/gitlab-ce
https://about.gitlab.com/features/
https://gitea.io/
https://jenkins.io/index.html
https://www.cloudbees.com/
https://jenkins.io/projects/blueocean/
https://drone.io/
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://gatling.io/
https://www.getpostman.com/
https://en.wikipedia.org/wiki/Integration_testing
https://www.seleniumhq.org/
https://www.sonarqube.org/
https://www.linuxjournal.com

The largest Open Source | Open Tech | Open Web
conference on the U.S. east coast

More than 4,000
technologists expected
from all over the world

Nearly 250
sessions

More than
240 speakers

Priced affordably
to encourage and

enable access

O C T O B E R 1 3 - 1 5 , 2 0 1 9
R A L E I G H , N C U S A

R E G I S T R AT I O N I S J U S T $ 1 7 9 T H R O U G H A U G U S T 3 1
E n t e r p r o m o c o d e L i n u x J o u r n a l f o r 2 0 % d i s c o u n t

F O R M O R E I N F O : A L LT H I N G S O P E N . O R G

http://allthingsopen.org

78 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Digging Through
the DevOps Arsenal:
Introducing Ansible
If you need to deploy hundreds of server or client nodes in parallel,
maybe on-premises or in the cloud, and you need to configure
each and every single one of them, what do you do? How do you
do it? Where do you even begin? Many configuration management
frameworks exist to address most, if not all, of these questions and
concerns. Ansible is one such framework.

By Petros Koutoupis

You may have heard of Ansible already, but for those who haven’t or don’t know
what it is, Ansible is a configuration management and provisioning tool. (I’ll get to
exactly what that means shortly.) It’s very similar to other tools, such as Puppet,
Chef and Salt.

Why use Ansible? Well, because it’s simple to master. I don’t mean that the others are
not simple, but Ansible makes it easy for individuals to pick up quickly. That’s because
Ansible uses YAML as its base to provision, configure and deploy. And because of this
approach, tasks are executed in a specific order. During execution, if you trip over a
syntax error, it will fail once you hit it, potentially making it easier to debug.

Now, what’s YAML? YAML (or YAML Ain’t Markup Language) is a human-readable
data-serialization language mostly used to capture configuration files. You know how
JSON is easier to implement and use over XML? Well, YAML takes a more simplistic

https://www.linuxjournal.com

79 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

approach than JSON. Here’s an example of a typical YAML structure containing a list:

data:
 - var1:
 a: 1
 b: 2
 - var2:
 a: 1
 b: 2
 c: 3

Now, let’s swing back to Ansible. Ansible is an open-source automation platform
freely available for Linux, macOS and BSD. Again, it’s very simple to set up and use,
without compromising any power. Ansible is designed to aid you in configuration
management, application deployment and the automation of assorted tasks. It works
great in the realm of IT orchestration, in which you need to run specific tasks in
sequence and create a chain of events that must happen on multiple and different
servers or devices.

Here’s a good example: say you have a group of web servers behind a load balancer.
You need to upgrade those web servers, but you also need to ensure that all but one
server remains online for the upgrade process. Ansible can handle such a complex task.

Ansible uses SSH to manage remote systems across the network, and those systems
are required to have a local installation of not only SSH but also Python. That means
you don’t have to install and configure a client-server environment for Ansible.

Install Ansible
Although you can build the package from source (either from the public Git
repository or from a tarball), most modern Linux distributions will have binary
packages available in their local package repositories. You need to have Ansible
installed on at least one machine (your control node). Remember, all that’s required
on the remote machines are SSH and Python.

https://www.linuxjournal.com

80 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

To install on Red Hat or CentOS:

$ sudo yum install ansible

To install on Ubuntu:

$ sudo apt install ansible

Configure Your SSH Keys and Install Them on the
Remote Hosts
Life will be much easier once you install SSH keys on each node as an authorized
key. The purpose of this exercise is to provision access to each node from the other
without requiring a password for each login. This feature facilitates automated
and passwordless logins using the SSH protocol. Another name for key-based
authentication in SSH is called public key authentication.

Create an RSA key pair:

$ ssh-keygen -t rsa

For the sake of simplicity, let’s leave the defaults to both the location of the key and
the passphrase. Proceed by pressing enter for every requested input until you return
back to the shell prompt.

Once the SSH key has been created, copy the public key to the remote server. In this
exercise, you’re required to do this from the control node over to the remote node:

$ cat ~/.ssh/id_rsa.pub | ssh user@192.168.1.109 "cat >>
 ↪~/.ssh/authorized_keys"

Replace the user name and IP address as needed. You can make sure that everything
works by SSHing to the remote node from your designated control node. If done

https://www.linuxjournal.com

81 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

correctly, you won’t be prompted for a password, and you’ll automatically log in to
the shell of the remote machine.

Define the Remote Machines
Let’s define which nodes are going to be the remote nodes from the control node.
But before doing that, let’s first relocate the default hosts configuration file:

$ sudo mv /etc/ansible/hosts /etc/ansible/hosts.orig

Create a new /etc/ansible/hosts file, and define a new group with a list of the IP
addresses to be identified under that same group. In this case, let’s define a group
called web, and underneath it, let’s have a single remote node, 192.168.1.109:

[web]
192.168.1.109

If you want to add more to this group, you would do so on a new line. For example:

[web]
192.168.1.109
192.168.1.110
192.168.1.111

If you want to test this on a local machine instead of two or more separate nodes,
create a group called local, and add the localhost IP address:

[local]
127.0.0.1

Run Basic Tasks
Now that you’ve done all of this, you should be able to run tasks on the defined
remote servers. But, first let’s make sure that all is well. Remember, Ansible

https://www.linuxjournal.com

82 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

needs to be able to log in directly to the remote nodes via SSH and without a
password. If you haven’t already, please refer to the SSH key section above. Run
the following command:

$ ansible all -m ping

Your response should look something like this JSON output for all the nodes in all
the groups defined in the /etc/ansible/hosts file:

192.168.1.109 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python"
 },
 "changed": false,
 "ping": "pong"
}

If you want to run a command to all of your nodes under the group web, and you
know that each node in that group is a Debian-based distribution, you would run
the following:

$ ansible web -m shell -a 'cat /etc/debian_version'

Note: the -m option defines the module to be used. The first attempt used the ping
module, and this example shows invoking the shell for a shell-based command.

The output of the above command will look similar to the following:

192.168.1.109 | CHANGED | rc=0 >>
buster/sid

Now let’s say you need to run a command as a completely different user:

https://www.linuxjournal.com

83 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

$ ansible web --become-user=root -m shell -a 'tail -n5
 ↪/var/log/syslog'

You can rely on the --become-user option and append the desired user to the
perimeter. The tail command above will output what you would typically expect:

192.168.1.109 | CHANGED | rc=0 >>
Jun 15 20:17:51 ubuntu-test systemd>1@: Started Session �
 ↪of user petros.
Jun 15 20:17:52 ubuntu-test ansible-command: Invoked with
 ↪creates=None executable=None _uses_shell=True
 ↪strip_empty_ends=True _raw_params=cat
 ↪/etc/debian_version removes=None argv=None warn=True
 ↪chdir=None stdin_add_newline=True stdin=None
Jun 15 20:25:12 ubuntu-test systemd>1@: Started Session 10
 ↪of user petros.
Jun 15 20:25:1� ubuntu-test ansible-command: Invoked with
 ↪creates=None executable=None _uses_shell=True
 ↪strip_empty_ends=True _raw_params=tail -n5
 ↪/var/log/messages removes=None argv=None warn=True
 ↪chdir=None stdin_add_newline=True stdin=None
Jun 15 20:25:�4 ubuntu-test ansible-command: Invoked with
 ↪creates=None executable=None _uses_shell=True
 ↪strip_empty_ends=True _raw_params=tail -n5
 ↪/var/log/syslog removes=None argv=None warn=True
 ↪chdir=None stdin_add_newline=True stdin=None

Create Playbooks
Using these basic functions, you easily can batch a few commands to various nodes
across your network, but often you’ll find yourself in need of running more than one
or two shell commands. This is where Playbooks come into the picture. Playbooks run
multiple tasks and provide more advanced functionality than your ad hoc commands.

https://www.linuxjournal.com

84 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Say you want to install a few packages when a remote node comes online. You’ll need
to create a YAML file to capture those actions. Using a text editor, create a file named
package-install.yml with the following YAML structure:

- hosts: web
 tasks:
 - name: Install Make
 apt: pkg=make state=present update_cache=true
 become: yes
 - name: Install GCC
 apt: pkg=gcc state=present update_cache=true
 become: yes

You’re essentially going to tell Ansible that you want to install both the Make and GCC
packages (alongside its dependencies) on all nodes in the group web. You also are
telling Ansible that you need to install these two packages as a privileged user with the
become: yes field.

Now it’s time to kick off the Ansible Playbook. If you’re not executing as a privileged
user already, you need to add the --ask-become-pass option, which will prompt you
for a password to su into root to execute the desired actions. This works only if all
nodes under the same group share the same user and password schemes:

$ ansible-playbook --ask-become-pass package-install.yml
BECOME password:

PLAY [web]
**

TASK [Gathering Facts]
**
ok: [192.168.1.109]

https://www.linuxjournal.com

85 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

TASK [Install Make]
**
 [WARNING]: Updating cache and auto-installing missing
 ↪dependency: python-apt

changed: [192.168.1.109]

TASK [Install GCC]
**
changed: [192.168.1.109]

PLAY RECAP
**
192.168.1.109 : ok=3 changed=2 unreachable=0
 ↪failed=0 skipped=0 rescued=0 ignored=0

Now you should be starting to see some real power here: both Make and GCC have
been installed to the nodes in the group.

Handlers
Ansible supports an event-handling system called handlers. A handler is sort of like
a task, and it can pretty much accomplish anything a task can do, but it’ll instead
run when called by another task. A handler will take action only when the event it’s
listening for is called.

Say your YAML file looks like the following:

- hosts: web
 tasks:
 - name: Install Apache
 apt: pkg=apache2 state=present update_cache=true

https://www.linuxjournal.com

86 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

 become: yes
 notify:
 - Start Apache
 handlers:
 - name: Start Apache
 service: name=apache2 state=started

This instructs Ansible to run a task named “Install Apache”, and once it completes,
it will notify a handler named “Start Apache” to start the web service. It’s able to
start the web service via a service module, which supports your typical start, stop,
restart and reload commands. (I mentioned the concept of modules earlier, if you can
recall both ping and shell.) The output of the above YAML structure should look
something like this:

$ ansible-playbook --ask-become-pass package-install.yml
BECOME password:

PLAY [web]
**

TASK [Gathering Facts]
**
ok: [192.168.1.109]

TASK [Install Apache]
**
changed: [192.168.1.109]

RUNNING HANDLER [Start Apache]
**
ok: [192.168.1.109]

PLAY RECAP

https://www.linuxjournal.com

87 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

**
192.168.1.109 : ok=3 changed=1 unreachable=0
 ↪failed=0 skipped=0 rescued=0 ignored=0

Summary
The examples here are quite small and limited. As you likely have guessed, you are able
to add more tasks and notify more handlers from within a single YAML file. It doesn’t
need to be limited to just a few. It may take some time and trial and error to build up
enough of a list to handle every action in your automated environment. There is so
much more that you can do with Ansible and so much more to cover. Although this
guide provides a good foundation to get you started, I barely scraped the surface of
this extremely powerful configuration management framework. ◾

Petros Koutoupis, LJ Editor at Large, is currently a senior performance software engineer at Cray for its Lustre
High Performance File System division. He is also the creator and maintainer of the RapidDisk Project. Petros
has worked in the data storage industry for well over a decade and has helped pioneer the many technologies
unleashed in the wild today.

Resources
• Ansible

• “Ansible: the Automation Framework that Thinks Like a Sysadmin”
 by Shawn Powers, LJ, August 2017

• “Ansible: Making Things Happen” by Shawn Powers, LJ, September 2017

• “Ansible, Part III: Playbooks” by Shawn Powers, LJ, October 2017

• Ansible, Part IV, Putting It All Together” by Shawn Powers, LJ, November 2017

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.ansible.com/
https://www.linuxjournal.com/content/ansible-automation-framework-thinks-sysadmin
https://www.linuxjournal.com/content/ansible-making-things-happen
https://www.linuxjournal.com/content/ansible-part-iii-playbooks
https://www.linuxjournal.com/content/ansible-part-iv-putting-it-all-together
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

88 | August 2019 | https://www.linuxjournal.com

My Favorite
Infrastructure
Take a tour through the best infrastructure I ever built with stops
in architecture, disaster recovery, configuration management,
orchestration and security.

By Kyle Rankin

Working at a startup has many pros and cons, but one of the main benefits over
a traditional established company is that a startup often gives you an opportunity
to build a completely new infrastructure from the ground up. When you work on
a new project at an established company, you typically have to account for legacy
systems and design choices that were made for you, often before you even got to the
company. But at a startup, you often are presented with a truly blank slate: no pre-
existing infrastructure and no existing design choices to factor in.

Brand-new, from-scratch infrastructure is a particularly appealing prospect if you are
at a systems architect level. One of the distinctions between a senior-level systems
administrator and architect level is that you have been operating at a senior level long
enough that you have managed a number of different high-level projects personally
and have seen which approaches work and which approaches don’t. When you are at
this level, it’s very exciting to be able to build a brand-new infrastructure from scratch
according to all of the lessons you’ve learned from past efforts without having to
support any legacy infrastructure.

During the past decade, I’ve worked at a few different startups where I was asked to
develop new infrastructure completely from scratch but with high security, uptime
and compliance requirements, so there was no pressure to cut corners for speed

https://www.linuxjournal.com

89 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

like you might normally face at a startup. I’ve not only gotten to realize the joy of
designing new infrastructure, I’ve also been able to do it multiple times. Each time, I’ve
been able to bring along all of the past designs that worked, leaving behind the bits
that didn’t, and updating all the tools to take advantage of new features. This series
of infrastructure designs culminated in what I realize looking back on it is my favorite
infrastructure—the gold standard on which I will judge all future attempts.

In this article, I dig into some of the details of my favorite infrastructure. I describe
some of the constraints around the design and explore how each part of the
infrastructure fits together, why I made the design decisions I did, and how it all
worked. I’m not saying that what worked for me will work for you, but hopefully you
can take some inspiration from my approach and adapt it for your needs.

Constraints
Whenever you describe a solution you think works well, it’s important to preface
it with your design constraints. Often when people are looking for infrastructure
cues, the first place they look is how “big tech companies” do it. The problem with
that approach is that unless you also are a big tech company (and even if you are),
your constraints are likely very different from theirs. What works for them with their
budget, human resources and the problems they are trying to solve likely won’t work
for you, unless you are very much like them.

Also, the larger an organization gets, the more likely it is going to solve problems in-
house instead of using off-the-shelf solutions. There is a certain stage in the growth
of a tech company, when it has enough developers on staff, that when it has a new
problem to solve, it likely will use its army of developers to create custom, proprietary
tools just for itself instead of using something off the shelf—even if an off-the-shelf
solution would get the company 90% there. This is a shame, because if all of these
large tech companies put that effort into improving existing tools and sharing their
changes, we would all spend less time reinventing wheels. If you’ve ever interviewed
people who have spent a long time at a large tech company, you quickly realize that
they are really well trained to administer that specific infrastructure, but without
those custom tools, they may have a hard time working anywhere else.

https://www.linuxjournal.com

90 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Startup constraints also are very different from large company constraints, so it
might equally be a mistake to apply solutions that work for a small startup to a
large-scale company. Startups typically have very small teams but also need to build
infrastructure very quickly. Mistakes that make their way to production often have
a low impact on startups. They are most concerned about getting some kind of
functioning product out to attract more investment before they run out of money.
This means that startups are more likely to favor not only off-the-shelf solutions, but
also favor cutting corners.

All that is to say, what worked for me under my constraints might not work for you
under your constraints. So before I go into the details, you should understand the
constraints I was working under.

Constraint 1: Seed Round Financial Startup This infrastructure was built for
a startup that was developing a web application in the financial space. We had
limitations both on the amount of time we could spend on building the infrastructure
and the size of the team we had available to build it. In many cases, there were single-
member teams. In previous iterations of building my ideal infrastructure, I had a
team of at least one other person if not multiple people to help me build out the
infrastructure, but here I was on my own.

The combination of a time constraint along with the fact that I was doing this alone
meant I was much more likely to pick stable solutions that worked for me in the past
using technologies I was deeply familiar with. In particular, I put heavy emphasis on
automation so I could multiply my efforts. There is a kind of momentum you can build
when you use configuration management and orchestration in the right way.

Constraint 2: Non-Sysadmin Emergency Escalation I was largely on my own not
just to build the infrastructure, but also when it came to managing emergencies.
Normally I try to stick to a rule that limits production access to system administrators,
but in this case, that would mean we would have no redundancy if I was unavailable.
This constraint meant that if I was unavailable for whatever reason, alerts needed to
escalate up to someone who primarily had a developer background with only some

https://www.linuxjournal.com

91 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Linux server experience. Because of this, I had to make sure that it was relatively
straightforward to respond to the most common types of emergencies.

Constraint 3: PCI Compliance I love the combination of from-scratch infrastructure
development you get to do in a startup with tight security constraints that prevent
you from cutting corners. A lot of people in the security space look down a bit on
PCI compliance, because so many companies think of it as a box to check and hire
firms known for checking that box with minimal fuss. However, there are a lot of
good practices within PCI-DSS if you treat them as a minimum security bar to manage
honestly, instead of a maximum security bar to skirt by. We had a hard dependency
on PCI compliance, so meeting and exceeding that policy had some of the greatest
impact on the design.

Constraint 4: Custom Rails Web Applications The development team had a strong
background in Rails, so most of the in-house software development was for custom
middleware applications based on a standard database-backed Rails application stack.
A number of different approaches exist for packaging and distributing this kind of
application, so this also factored into the design.

Constraint 5: Minimal Vendor Lock-in It’s somewhat common for venture-capital-
backed startups to receive credits from cloud providers to help them get started.
It not only helps startups manage costs while they’re trying to figure out their
infrastructure, but also if the startup manages to use cloud-specific features, it has
the side benefit of making it harder for the startup to move to a different provider
down the road once they have larger cloud bills.

Our startup had credits with more than one cloud provider, so we wanted the option
to switch to another provider in case we were cash-strapped when we ran out of
credits. This meant our infrastructure had to be designed for portability and use
as few cloud-specific features as possible. The cloud-specific features we did use
needed to be abstracted away and easily identified, so we could port them to another
provider more easily later.

https://www.linuxjournal.com

92 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Architecture
PCI policy pays a lot of attention to systems that manage sensitive cardholder data.
These systems are labeled as “in scope”, which means they must comply with PCI-DSS
standards. This scope extends to systems that interact with these sensitive systems,
and there is a strong emphasis on compartmentation—separating and isolating the
systems that are in scope from the rest of the systems, so you can put tight controls
on their network access, including which administrators can access them and how.

Our architecture started with a strict separation between development and
production environments. In a traditional data center, you might accomplish this
by using separate physical network and server equipment (or using abstractions
to virtualize the separation). In the case of cloud providers, one of the easiest,
safest and most portable ways to do it is by using completely separate accounts for
each environment. In this way, there’s no risk that a misconfiguration would expose
production to development, and it has a side benefit of making it easy to calculate
how much each environment is costing you per month.

When it came to the actual server architecture, we divided servers into individual
roles and gave them generic role-based names. We then took advantage of the Virtual
Private Cloud feature in Amazon Web Services to isolate each of these roles into its
own subnet, so we could isolate each type of server from others and tightly control
access between them.

By default, Virtual Private Cloud servers are either in the DMZ and have public IP
addresses, or they have only internal addresses. We opted to put as few servers as
possible in the DMZ, so most servers in the environment only had a private IP address.
We intentionally did not set up a gateway server that routed all of these servers’
traffic to the internet—their isolation from the internet was a feature!

Of course, some internal servers did need some internet access. For those servers,
it was only to talk to a small number of external web services. We set up a series of
HTTP proxies in the DMZ that handled different use cases and had strict whitelists in
place. That way we could restrict internet access from outside the host itself to just

https://www.linuxjournal.com

93 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

the sites it needed, while also not having to worry about collecting lists of IP blocks
for a particular service (particularly challenging these days since everyone uses cloud
servers).

Fault Tolerance
Cloud services often are unreliable, but it was critical that our services could scale
and survive an outage on any one particular server. We started by using a minimum
of three servers for every service, because fault-tolerance systems designed for two
systems tend to fall into a traditional primary/failover architecture that doesn’t scale
well past two. A design that could account for three servers probably also could
accommodate four or six or more.

Cloud systems rely on virtualization to get the most out of bare metal, so any servers
you use aren’t real physical machines, but instead some kind of virtual machine
running alongside others on physical hardware. This presents a problem for fault
tolerance: what happens if all of your redundant virtual machines end up on the same
physical machine, and that machine goes down?

To address this concern, some cloud vendors separate a particular site into multiple
standalone data centers, each with its own hardware, power and network that are
independent from the others. In the case of Amazon, these are called Availability
Zones, and it’s considered a best practice to spread your redundant servers across
Availability Zones. We decided to set up three Availability Zones and divided our
redundant servers across them.

In our case, we wanted to spread out the servers consistently and automatically, so
we divided our servers into threes based on the number at the end of their hostname.
The software we used to spawn instances would look at the number in the hostname,
apply a modulo three to it, and then use that to decide which Availability Zone a host
would go to. Hosts like web1, web4 and web7 would be on one group; web2, web5
and web8 in another; and web3, web6 and web9 in a third zone.

When you have multiple servers, you also need some way for machines to fail over

https://www.linuxjournal.com

94 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

to a different server if one goes down. Some cloud providers offer in-house load
balancing, but because we needed portability, we didn’t want to rely on any cloud-
specific features. Although we could have added custom load-balancing logic to our
applications, instead we went with a more generic approach using the lightweight and
fast HAProxy service.

One approach to using HAProxy would be to set up a load-balancing server running
HAProxy and have applications talk to it on various ports. This would behave a lot like
some of the cloud-provided load-balancing services (or a load-balancing appliance
in a traditional data center). Of course, if you use that approach, you have another
problem: what happens when the load balancer fails? For true fault tolerance, you’d
need to set up multiple load balancers and then configure the hosts with their own
load-balancing logic so they could fail over to the redundant load balancer in the case
of a fault, or otherwise rely on a traditional primary/secondary load-balancer failover
with a floating IP that would be assigned to whichever load balancer was active.

This traditional approach didn’t work for us, because we realized that there might
be cases where one entire Availability Zone might be segregated from the rest of
the network. We also didn’t want to add additional failover logic to account for a
load-balancer outage. Instead, we realized that because HAProxy was so lightweight
(especially compared to the regular applications on the servers), we could just
embed an HAProxy instance on every server that needed to talk to another service
redundantly. That HAProxy instance would be aware of any downstream service that
local server needed to talk to and present ports on the localhost that represented
each downstream service.

Here’s how this worked in practice: if webappA needed to talk to middlewareB, it
would just connect to localhost port 8001. HAProxy would take care of health checks
for downstream services, and if a service went down, it would automatically connect
to another. In that circumstance, webappA might see that its connection dropped
and would just need to reconnect. This meant that the only fault-tolerance logic our
applications needed was the ability to detect when a connection dropped and retry.

https://www.linuxjournal.com

95 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

We also organized the HAProxy configuration so that each host favored talking to
a host within its own Availability Zone. Hosts in other zones were designated as
“backup” hosts in HAProxy, so it would use those hosts only if the primary host was
down. This helped optimize network traffic as it stayed within the Availability Zone it
started with under normal circumstances. It also made analyzing traffic flows through
the network much easier, as we could assume that traffic that entered through
frontend2 would be directed to middleware2, which would access database2.
Since we made sure that traffic entering our network was distributed across our
front-end servers, we could be assured that load was relatively evenly distributed,
yet individual connections would tend to stick on the same set of servers throughout
a particular request.

Finally, we needed to factor disaster recovery into our plans. To do this, we created a
complete disaster recovery environment in a totally separate geographic region from
production that otherwise mimicked the servers and configuration in production.
Based on our recovery time lines, we could get away with syncing our databases every
few hours, and because these environments were independent of each other, we
could test our disaster recovery procedure without impacting production.

Configuration Management
One of the most important things to get right in this infrastructure was the
configuration management. Because I was building and maintaining everything largely
by myself and had some tight time lines, the very first thing I focused on was a strong
foundation of configuration management using Puppet. I had a lot of experience
with Puppet through the years from before it was the mature and robust product it
is today. Today though, I could take advantage of all of the high-quality modules the
Puppet community has written for common tasks to get a head start. Why reinvent
an nginx configuration when the main Puppetlabs module did everything I needed
already? One of the keys to this approach was making sure that we started with a basic
vanilla image with no custom configuration on it and set it so that all configuration
changes that turned a vanilla server into, say, a middleware app server was done
through Puppet.

https://www.linuxjournal.com

96 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Another critical reason why I chose Puppet was precisely for the reason many people
avoid it: the fact that the Puppetmaster can sign Puppet clients using TLS certificates.
Many people hit a big roadblock when they try to set up Puppetmasters to sign clients
and opt for a masterless setup instead. In my use case, I would have been missing a
great opportunity. I had a hard requirement that all communication over the cloud
network be protected using TLS, and by having a Puppetmaster that signed hosts,
I would get a trusted local Certificate Authority (the Puppetmaster) and have valid
local and signed certificates on every host in my network for free!

Many people open themselves up to vulnerabilities when they enable autosigning
on Puppet clients, yet having to sign new Puppet clients manually, particularly in a
cloud instance, can be cumbersome. I took advantage of a feature within Puppet that
lets you add custom valid headers into the Certificate Signing Request (CSR) the
Puppet client would generate. I used a particular x509 header that was designed to
embed a pre-shared key into the CSR. Then I used Puppet’s ability to specify a custom
autosigning script. This script then gets passed the client CSR and decides whether
to sign it. In my script, we inspected the CSR for the client’s name and the pre-shared
key. If they matched the values in the copy of that hostname/pre-shared key pair on
the Puppetmaster, we signed it; otherwise, we didn’t.

This method worked because we spawned new hosts from the Puppetmaster itself.
When spawning the host, the spawning script would generate a random value and
store it in the Puppet client’s configuration as a pre-shared key. It would also store a
copy of that value in a local file named after the client hostname for the Puppetmaster
autosign script to read. Since each pre-shared key was unique and used only for a
particular host, once it was used, we deleted that file.

To make configuring TLS on each server simple, I added a simple in-house Puppet
module that let me copy the local Puppet client certificate and local Certificate
Authority certificate wherever I needed it for a particular service, whether it was
nginx, HAProxy, a local webapp or Postgres. Then I could enable TLS for all of my
internal services knowing that they all had valid certificates they could use to trust
each other.

https://www.linuxjournal.com

97 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

I used the standard role/profile pattern to organize my Puppet modules and made sure
that whenever I had a Puppet configuration that was based on AWS-specific features, I
split that off into an AWS-specific module. That way, if I needed to migrate to another
cloud platform, I easily could identify which modules I’d need to rewrite.

All Puppet changes were stored in Git with the master branch acting as the
production configuration and with additional branches for the other environments.
In the development environment, the Puppetmaster would apply any changes
that got pushed automatically, but since that Git repository was hosted out of
the development environment, we had a standing rule that no one should be able
to change production directly from development. To enforce this rule, changes
to the master branch would get synced to production Puppetmasters but never
automatically applied—a sysadmin would need to log in to production and explicitly
push the change using our orchestration tool.

Orchestration
Puppet is great when you want to make sure that a certain set of servers all have
the same changes, as long as you don’t want to apply changes in a particular order.
Unfortunately, a lot of changes you’ll want to make to a system follow a certain order.
In particular, when you perform software updates, you generally don’t want them to
arrive across your servers in a random order over 30 minutes. If there is a problem
with the update, you want the ability to stop the update process and (in some
environments) roll back to the previous version. When people try to use Puppet for
something it’s not meant to do, they often get frustrated and blame Puppet, when
really they should be using Puppet for configuration management and some other
tool for orchestration.

In the era when I was building this environment, MCollective was the most popular
orchestration tool to pair with Puppet. Unlike some orchestration tools that are much
closer to the SSH for loop scripts everyone used a few decades ago, MCollective has
a strong security model where sysadmins are restricted to a limited set of commands
within modules they have enabled ahead of time. Every command runs in parallel
across the environment, so it’s very fast to push changes, whether it’s to one host or

https://www.linuxjournal.com

98 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

every host.

The MCollective client doesn’t have SSH access to hosts; instead, it signs each
command it issues and pushes it to a job queue. Each server checks that queue for
commands intended for it and validates the signature before it executes it. In this way,
compromising the host on which the MCollective client runs doesn’t give you remote
SSH root access to the rest of the environment—it gives you access only to the
restricted set of commands you have enabled.

We used our bastion host as command central for MCollective, and the goal was to
remove the need for sysadmins to have to log in to individual servers to an absolute
minimum. To start, we wanted to make sure that all of the common sysadmin tasks
could be performed using MCollective on the bastion host. MCollective already
contains modules that let you query the hosts on your network that match particular
patterns and pull down facts about them, such as what version a particular software
package is.

The great thing about MCollective commands is that they let you build a library of
individual modules for particular purposes that you then can chain together in scripts
for common workflows. I’ve written in the past about how you can use MCollective
to write effective orchestration scripts, and this was an environment where it really
shined. Let’s take one of the most common sysadmin tasks: updating software.
Because MCollective already had modules in place to query and update packages
using the native package manager, we packaged all of our in-house tools as Debian
packages as well and put them in internal package repositories. To update an in-house
middleware package, a sysadmin would normally perform the following series of steps
by hand:

• Get a list of servers that run that software.

• Start with the first server on the list.

• Set a maintenance mode in monitoring for that server.

https://www.linuxjournal.com

99 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

• Tell any load balancers to move traffic away from the server.

• Stop the service.

• Update the software.

• Confirm the software is at the correct version.

• Start the service.

• Test the service.

• Tell any load balancers to move traffic back to the server.

• End the maintenance mode.

• Repeat for the rest of the hosts.

All I did was take each of the above steps and make sure there was a corresponding
MCollective command for it. Most of the steps already had built-in MCollective
plugins for them, but in a few cases, such as for the load balancers, I wrote a simple
MCollective plugin for HAProxy that would control the load balancers. Remember,
many of the servers in the environment had their own embedded HAProxy instance,
but because MCollective runs in parallel, I could tell them all to redirect traffic at the
same time.

Once each of these steps could be done with MCollective, the next step was to
combine them all into a single generic script to deploy an application. I also added
appropriate checks at each of the stages, so in the event of an error, the script
would stop and exit with a descriptive error. In the development environment, we
automatically pushed out updates once they passed all of their tests, so I also made
sure that our continuous integration server (we used Jenkins) used this same script
to deploy our app updates for dev. That way I could be sure the script was being

https://www.linuxjournal.com

100 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

tested all the time and could stage improvements there first.

Having a single script that would automate all of these steps for a single app was
great, but the reality is that a modern service-oriented architecture has many of these
little apps. You rarely deploy one at a time; instead, you have a production release
that might contain five or more apps, each with their own versions. After doing this by
hand a few times, I realized there was room to automate this as well.

The first step in automating production releases was to provide a production
manifest my script could use to tell it what to do. A production manifest lists all of
the different software a particular release will have and which versions you will use. In
well organized companies, this sort of thing will be tracked in your ticketing system,
so you can have proper approval and visibility into what software went to production
when. This is especially handy if you have a problem later, because you more easily
can answer the question “what changed?”

I decided to make the right approach the easy approach and use our actual
production manifest ticket as input for the script. That meant if you wanted an
automated production release, the first step was to create a properly formatted
ticket with an appropriate title, containing a bulleted list of each piece of software
you want to deploy and which version you intend on deploying, in the order you want
them to be deployed. You then would log in to production (thereby proving you were
authorized to perform production changes) and run the production deploy script,
which would take as input the specific ticket number it should read. It would perform
the following steps:

• Parse the ticket and prompt the sysadmin with the list of packages it will deploy as a
sanity check and not proceed until the sysadmin says “yes”.

• Post a message in group chat alerting the team that a production release is starting,
using the ticket title as a description.

• Update the local package repository mirrors so they have the latest version of

https://www.linuxjournal.com

101 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

the software.

• For each app: 1) notify group chat that the app is being updated, 2) run the
app deployment automation script and 3) notify group chat that the app
updated successfully.

• Once all apps have been updated successfully, notify group chat.

• Email the log of all updates to a sysadmin alias and also as a comment to the ticket.

Like with the individual app deploy script, if there were any errors, we’d immediately
abort the script and send alerts with full logs to email, chat and in the ticket itself, so
we could investigate what went wrong. We would perform deployments first in a hot
disaster recovery environment located in a separate region, and if it succeeded, in
production as well. Once the script successfully worked in production, the script was
smart enough to close the ticket. In the end, performing a production deployment,
whether you wanted to update one app or ten, involved the following steps:

• Create a properly formatted ticket.

• Log in to the disaster recovery environment and run the production deploy script.

• Log in to the production environment and run the production deploy script.

The automation made the process so easy, production deploys were relatively
painless while still following all of our best practices. This meant when I went on
vacation or was otherwise unavailable, even though I was the only sysadmin on
the team, my boss with a strong development background easily could take over
production deployments. The consistent logging and notifications also made it
so that everyone was on the same page, and we had a nice audit trail for every
software change in production.

I also automated the disaster recovery procedure. You’ve only really backed something

https://www.linuxjournal.com

102 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

up if you’ve tested recovery. I set as a goal to test our disaster recovery procedure
quarterly, although in practice, I actually did it monthly, because it was useful to have
fresh data in the disaster recovery environment, so we could better catch any data-
driven bugs in our software updates before they hit production. Compared to many
environments, this is a much more frequent test, but I was able to do it because I
wrote MCollective modules that would restore the disaster recovery databases from
backup and then wrapped the whole thing in a master script that turned it all into a
single command that would log the results into a ticket, so I could keep track of each
time I restored the environment.

Security
We had very tight security requirements for our environment that started (but didn’t
end) with PCI-DSS compliance. This meant that all network communication between
services was encrypted using TLS (and the handy internal certificate authority Puppet
provided), and all sensitive data was stored on disks that were encrypted at rest. It
also meant that each server generally performed only one role.

Most of the environment was isolated from the internet, and we went further to
define ingress and egress firewall rules both on each host and enforced them in
Amazon’s security groups. We started with a “deny by default” approach and opened
up ports between services only when they were absolutely necessary. We also
employed the “principle of least privilege”, so only a few employees had production
access, and we developers did not have access to the bastion host.

Each environment had its own VPN, so to access anything but public-facing
services, you started by connecting to a VPN that was protected with two-factor
authentication. From there, you could access the web interfaces for our log
aggregation server and other monitoring and trending dashboards. To log in to any
particular server, you first had to ssh in to a bastion host, which only accepted SSH
keys and also required its own two-factor authentication. It was the only host that
was allowed access to the SSH ports on other machines, but generally, we used
orchestration scripts whenever possible, so we didn’t have to go further than the
bastion host to administer production.

https://www.linuxjournal.com

103 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

Each host had its own Host-based Intrusion Detection System (HIDS) using ossec,
which not only would alert on suspicious activity on a server, but it also would parse
through logs looking for suspicious activity. We also used OpenVAS to perform
routine network vulnerability scans across the environment.

To manage secrets, we used Puppet’s hiera-eyaml module that allows you to store
a hierarchy of key:value pairs in encrypted form. Each environment’s Puppetmaster
had its own GPG key that it could use to decrypt these secrets, so we could push
development or production secrets to the same Git repository, but because these
files were encrypted for different recipients, development Puppetmasters couldn’t
view production secrets, and production Puppetmasters couldn’t view development
secrets. The nice thing about hiera is that it allowed you to combine plain text
and encrypted configuration files and very carefully define which secrets would be
available to which class of hosts. The clients would never be able to access secrets
unless the Puppetmaster allowed them.

Data that was sent between production and the disaster recovery environment was
GPG-encrypted with a key in the disaster recovery environment and also used an
encrypted transport between the environments. The disaster recovery test script did
all the heavy lifting required to decrypt backups and apply them, so the administrator
didn’t have to deal with them. All of these keys were stored in Puppet’s hiera-eyaml
module, so we didn’t have to worry about losing them in the event a host went down.

Conclusion
Although I covered a lot of ground in this infrastructure write-up, I still covered only
a lot of the higher-level details. For instance, deploying a fault-tolerant, scalable
Postgres database could be an article all by itself. I also didn’t talk much about the
extensive documentation I wrote that, much like my articles in Linux Journal, walks
the reader through how to use all of these tools we built.

As I mentioned at the beginning of this article, this is only an example of an
infrastructure design that I found worked well for me with my constraints. Your
constraints might be different and might lead to a different design. The goal here is

https://www.linuxjournal.com

104 | August 2019 | https://www.linuxjournal.com

DEEP
DIVE

to provide you with one successful approach, so you might be inspired to adapt it to
your own needs. ◾

Kyle Rankin is a Tech Editor and columnist at Linux Journal and the Chief Security Officer at Purism. He is the author
of Linux Hardening in Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server Book, Knoppix Hacks,
Knoppix Pocket Reference, Linux Multimedia Hacks and Ubuntu Hacks, and also a contributor to a number of other
O’Reilly books. Rankin speaks frequently on security and open-source software including at BsidesLV, O’Reilly Security
Conference, OSCON, SCALE, CactusCon, Linux World Expo and Penguicon. You can follow him at @kylerankin.

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

Resources
• “Orchestration with MCollective” by Kyle Rankin, LJ, December 2016

• “Orchestration with MCollective, Part II” by Kyle Rankin, LJ, January 2017

• “Using Hiera with Puppet” by Scott Lackey, LJ, March 2015

• Puppet

• Hiera

• MCollective

• Official PCI Security Standards Council Site

• HAProxy: the Reliable, High Performance TCP/HTTP Load Balancer

• “Puppet Redefines Infrastructure Automation” by Petros Koutoupis

http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com/content/orchestration-mcollective
https://www.linuxjournal.com/content/orchestration-mcollective-part-ii
https://www.linuxjournal.com/content/using-hiera-puppet
https://puppet.com/
https://puppet.com/docs/puppet/5.4/hiera_intro.html
https://puppet.com/docs/mcollective/current/index.html
https://www.pcisecuritystandards.org/
http://www.haproxy.org/
https://www.linuxjournal.com/content/puppet-redefines-infrastructure-automation
https://www.linuxjournal.com

Decentralized
Certificate Authority

and Naming

Free and open source contributors only:

handshake.org/signup

https://handshake.org/signup

106 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

Build a Versatile
OpenStack Lab
with Kolla
Hone your OpenStack skills with a full deployment in a single
virtual machine.

By John S. Tonello

It’s hard to go anywhere these days without hearing something about the urgent
need to deploy on-premises cloud environments that are agile, flexible and don’t cost
an arm and a leg to build and maintain, but getting your hands on a real OpenStack
cluster—the de facto standard—can be downright impossible.

Enter Kolla-Ansible, an official OpenStack project that allows you to deploy a
complete cluster successfully—including Keystone, Cinder, Neutron, Nova, Heat and
Horizon—in Docker containers on a single, beefy virtual machine. It’s actually just one
of an emerging group of official OpenStack projects that containerize the OpenStack
control plane so users can deploy complete systems in containers and Kubernetes.

To date, for those who don’t happen to have a bunch of extra servers loaded
with RAM and CPU cores handy, DevStack has served as the go-to OpenStack lab
environment, but it comes with some limitations. Key among those is your inability to
reboot a DevStack system effectively. In fact, rebooting generally bricks your instances
and renders the rest of the stack largely unusable. DevStack also limits your ability to
experiment beyond core OpenStack modules, where Kolla lets you build systems that
can mimic full production capabilities, make changes and pick up where you left off
after a shutdown.

https://www.linuxjournal.com

107 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

In this article, I explain how to deploy Kolla, starting from the initial configuration
of your laptop or workstation, to configuration of your cluster, to putting your
OpenStack cluster into service.

Why OpenStack?
As organizations of all shapes and sizes look to speed development and deployment
of mission-critical applications, many turn to public clouds like Amazon Web
Services (AWS), Microsoft Azure, Google Compute Engine, RackSpace and many
others. All make it easy to build the systems you and your organization need
quickly. Still, these public cloud services come at a price—sometimes a steep price
you only learn about at the end of a billing cycle. Anyone in your organization
with a credit card can spin up servers, even ones containing proprietary data and
inadequate security safeguards.

OpenStack, a community-driven open-source project with thousands of developers
worldwide, offers a robust, enterprise-worthy alternative. It gives you the flexibility of
public clouds in your own data center. In many ways, it’s also easier to use than public
clouds, particularly when OpenStack administrators properly set up networks, carve
out storage and compute resources, and provide self-service capabilities to users. It
also has tons of add-on capabilities to suit almost any use case you can imagine. No
wonder 75% of private clouds are built using OpenStack.

The challenge remains though in getting OpenStack up and running. Even though it
doesn’t rely on any particular brand of hardware, it does require machines with plenty
of memory and CPU cores. That alone creates a roadblock to many looking to try it.
The Kolla project gets you past hurdle.

What You’ll Need
Kolla can be run in a single virtual machine (or bare-metal box), known as an
“all-in-one” deployment. You also can set it up to use multiple VMs, which is
called “multinode”. In this article, I show how to deploy the former using a virtual
machine deployed with KVM, the Linux virtualization service based on libvirtd. I
successfully deployed Kolla on a Dell 5530 with 32GB of RAM and an i7 CPU with

https://www.linuxjournal.com

108 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

12 cores, but I also did it on a machine with 16GB of RAM and four cores. You can
allocate whatever you have. Obviously, the more RAM and cores, the better your
OpenStack cluster will perform.

I used KVM for this deployment, but theoretically, you could use VirtualBox,
VMware Desktop or another hypervisor. The base of the system is Docker, so just
make sure you’re using a system that can run it. Don’t worry if you don’t know
much about Docker; Kolla uses Ansible to automate the creation of images and the
containers themselves.

To install KVM, check the requirements for your distribution, keeping in mind you’ll need
libvirtd, qemu and virt-manager (for GUI management). On Ubuntu, this would be:

$ sudo apt-get install qemu-kvm libvirt-bin bridge-utils
 ↪virt-manager

On Fedora, you’d use:

$ sudo dnf -y install bridge-utils libvirt virt-install
 ↪qemu-kvm

On openSUSE, you’d install the KVM patterns:

$ sudo zypper -n install patterns-openSUSE-kvm_server
 ↪patterns-server-kvm_tools

As part of your workstation configuration, I recommend setting up bridged
networking. This will enable you to connect to the Kolla VM (and the OpenStack
instances you create on it) directly from the host machine. Without this, KVM
defaults to a NAT configuration that isolates VMs from the host. (You’ll see how to
set up bridged network connections below.)

Finally, Kolla supports two Linux distributions for deployment: CentOS and Ubuntu.

https://www.linuxjournal.com

109 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

Your host machine can be any flavor of Linux you want (or even Windows or Mac),
but the main VM will be one of the two flavors listed above. That doesn’t mean you
can’t create OpenStack images for your OpenStack instances based on other Linux
flavors. You can, and you have a lot of options. For this lab though, I’m using CentOS
7 for the main Kolla VM.

Prepare Your Workstation
To work properly, Kolla wants two NICs active, and in a perfect world, these would
be distinct subnets, but they don’t need to be. More important for this lab is that
you can access your Kolla VM and your OpenStack instances, and to do that, set up
a bridge.

In my case, my workstation has two distinct networks, one internal and one
external. For the internal, I used 10.128.1.0/24, but you can create a subnet that
suits your needs. My subnet spans several physical and virtual servers on my lab
network, including DNS servers, so I was able to take advantage of those resources
automatically. Just be careful to carve out enough network resources to suit your
needs. I needed only about 50 IPs, so creating a /24 was plenty for OpenStack
instances and all my other servers.

You have several options on how to set up bridging depending on your Linux
distribution. Most bridges can be done simply by editing config files from the
command line, and others make it easy with graphical tools, like openSUSE’s YaST.
Regardless, the premise is the same. Instead of assigning network parameters to the
physical network device—eth0, eth1, enps01 and so on—you bind the unconfigured
physical device to a separate bridge device, which gets the static IP, netmask, gateway,
DNS servers and other network parameters.

Historically, Ubuntu users would edit /etc/network/interfaces to set up a bridge, which
might look something like this:

auto eth0
iface eth0 inet manual

https://www.linuxjournal.com

110 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

auto br0
iface br0 inet static
address 10.128.1.10
netmask 255.255.255.0
gateway 10.128.1.1
dns-nameservers 10.128.1.2 10.128.1.3 8.8.8.8
dns-search example.com
bridge_ports eth0
bridge_stp off
bridge_fd 0
bridge_maxwait 0

Current versions of Ubuntu (and other distributions) use netplan, which might look
something like this:

network:
 version: 2
 renderer: networkd
 ethernets:
 enp3s0:
 dhcp4: no
 bridges:
 br0:
 dhcp4: yes
 interfaces:
 - enp3s0

See the Resources section at the end of this article for more information on
using Netplan.

For distributions that use /etc/sysconfig /network/ configuration files (such as
CentOS and openSUSE), a separate bridge file references a physical device. For

https://www.linuxjournal.com

111 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

example, ifcfg-br0 would be created along with ifcfg-eth0:

$ sudo vi /etc/sysconfig/network-scripts/ifcfg-br0:

BOOTPROTO='static'
BRIDGE='yes'
BRIDGE_FORWARDDELAY='0'
BRIDGE_PORTS='eth0'
BRIDGE_STP='off'
BROADCAST='10.128.1.255'
ETHTOOL_OPTIONS=''
IPADDR='10.128.1.10/24'
STARTMODE='auto'

$ sudo vi /etc/sysconfig/network/ifcfg-eth0:

BOOTPROTO='none'
NAME='AX88179 Gigabit Ethernet'
STARTMODE='hotplug'

Depending on how your network is managed (NetworkManager, Wicked, Networkd),
you should restart the service before proceeding. If things seem to be out of whack,
try rebooting.

Create the Kolla Virtual Machine
This deployment of OpenStack using Kolla relies on a single, beefy virtual machine.
The more resources you can commit to it, the better OpenStack will perform. Here’s
the minimum you should assign:

• CentOS 7 (the minimal .iso is fine).

• 8GB of RAM.

https://www.linuxjournal.com

112 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

• Four vCPU.

• Two NICs (can be on the same network).

• Two virtual disks (at least 40GB for the host VM OS and at least 40GB for the
Cinder volumes).

This is a bare minimum. I strongly suggest at least 10GB of RAM and six vCPU. Also, if you
have an SSD or NVMe drive, use that for your VM storage. Solid-state drives will improve
performance dramatically and speed the initial deployment. Remember to size the disks
based on your anticipated use cases. If you plan to create 200GB worth of volumes for
your OpenStack instances, create a second virtual disk that’s at least 200GB.

Figure 1. When
creating your KVM
virtual machine,
remember to check
the “Customize
configuration before
install” box, so you
can add a second
storage device and
a second network
interface.

https://www.linuxjournal.com

113 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

Prepare CentOS
Step through the basic configuration of CentOS and reboot. To save resources
and time, don’t bother installing a desktop environment. Once the system restarts,
log in and perform a couple housekeeping tasks, including setting up a static IP
address—no bridging here, just a static address for eth0. Don’t configure the eth1
interface, but verify that it exists:

DEVICE='eth0'
HWADDR='00:AA:0C:28:46:6B:91'
Type=Ethernet
UUID=25a7bad9-616a-40a0-ace5-52aa0af9fdb7
ONBOOT=yes
NM_CONTROLLED=no
BOOTPROTO=static
IPADDR=10.128.1.20
NETMASK=255.255.255.0
GATEWAY=10.128.1.1

A few times when I created the CentOS 7 VM, I found that it would rename eth0
to eth1 automatically and persist that way. Kolla requires you to specify and
hard-code the interface names in the configuration file, so this unwanted name
change breaks the install. If that happens, just run the following to fix it (no
reboot required):

$ sudo ip link set eth1 down
$ sudo ip link set eth1 name eth0
$ sudo ip link set eth0 up

Install the Required Packages
You theoretically can run the following install commands in one fell swoop, but
it’s better to do them individually to isolate any errors. The epel-release and other
packages are required for Kolla, and if any fail, the rest of the installation will fail:

https://www.linuxjournal.com

114 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

$ sudo yum update
$ sudo yum install epel-release
$ sudo yum install python-pip
$ sudo yum install python-devel libffi-devel gcc openssl-devel
 ↪libselinux-python
$ sudo yum install ansible git

Update pip to avoid issues later:

$ sudo pip install --upgrade pip

Install kolla-ansible
You’ll need elements of the kolla-ansible package for the install, but you won’t use
this system version of the application to execute the individual commands later. Keep
that in mind if you run into errors during the deployment steps:

$ sudo pip install kolla-ansible --ignore-installed

Set Up Git and Clone the Kolla Repos
The installation is done primarily from code stored in GitHub, so you’ll need
GitHub credentials—namely a public SSH key from your Kolla host VM added to
your GitHub settings:

$ git config --global user.name "Your Name"
$ git config --global user.email "your@github-email"
$ git clone https://github.com/openstack/kolla
$ git clone https://github.com/openstack/kolla-ansible

https://www.linuxjournal.com

115 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

Copy Some Configuration Files and Install
kolla-ansible Requirements
Several configuration files provided by the kolla-ansible Git repo must be copied
to locations on your Kolla host VM. The requirements.txt files checks for all necessary
packages and installs any that aren’t satisfied:

$ sudo cp -r /usr/share/kolla-ansible/etc_examples/kolla /etc/
$ sudo cp /usr/share/kolla-ansible/ansible/inventory/* .
$ sudo pip install -r kolla/requirements.txt
$ sudo pip install -r kolla-ansible/requirements.txt

Figure 2. Your working directory now should look like this, containing the kolla and
kolla-ansible directories from GitHub.

https://www.linuxjournal.com

116 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

Copy the Configuration Files
Once the requirements files have run, a number of new resources will be available and
must be copied to /etc/kolla/ and your working directory:

$ sudo mkdir -p /etc/kolla
$ sudo cp -r kolla-ansible/etc/kolla/* /etc/kolla
$ sudo cp kolla-ansible/ansible/inventory/* .

Create Cinder Volumes for LVM
It’s possible to spin up your Kolla cluster without Cinder (the OpenStack storage
component), but you won’t be able to create instances other than ones built

Figure 3. If you created a SATA disk when you set up your Kolla host VM, the drive will show
up as sda.

https://www.linuxjournal.com

117 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

with the tiny Cirros image. Since this particular lab will use LVM for the back
end, a volume group should be created. This will be deployed on the second
virtual disk you created in your Kolla host VM. Use pvcreate and vgcreate
to create the volume group (to learn more, see the Cinder guide link in the
Resources section):

$ sudo pvcreate /dev/sda
$ sudo vgcreate cinder-volumes /dev/sda

Edit the Main Kolla Configuration Settings
Kolla gets information about your virtual environment from the main
configuration file, /etc/kolla/globals.yml. Ensure that the following items are
set and the lines are uncommented:

Define the installation type
config_strategy: "COPY_ALWAYS"
kolla_base_distro: "centos"
kolla_install_type: "binary"
openstack_release: "master" # "master" ensures you're
 # pulling the latest release.
 # You also can designate specific
 # OpenStack versions

network_interface: "eth0" # This must match the name of your
 # first NIC

Match first NIC on host
neutron_external_interface: "eth1" # This should match the
 # name of your second NIC

Match second NIC on host
kolla_internal_vip_address: "10.128.1.250" # Any free IP

https://www.linuxjournal.com

118 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

 # address on your
 # subnet

An unused address in eth0 subnet
keepalived_virtual_router_id: "51" # If initial deployment
 # fails to get the vip
 # address, change "51"
 # to "251"
enable_cinder: "yes"
enable_cinder_backend_iscsi: "yes"
enable_cinder_backend_lvm: "yes"
enable_heat: "yes"

Note: you can enable a wide variety of other OpenStack resources here, but for
an initial deployment, I recommend this relatively minimal configuration. Also
note that this configuration provides Heat and Cinder.

Auto-Generate Passwords
OpenStack requires a number of different credentials, and Kolla provides a
script to generate them for you. It also provides them, as necessary, to various
components during deployment:

$ sudo kolla-ansible/tools/generate_passwords.py

Later, you’ll need the Horizon dashboard login credentials, which are created
along with the rest of the passwords. Issue the following command to get the
“admin” user password:

$ grep keystone_admin_password /etc/kolla/passwords.yml

https://www.linuxjournal.com

119 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

Install the Heat Packages
Heat enables ready automation of full stacks within your OpenStack environment. I
recommend adding this component so you can experiment with building stacks, not
just instances:

$ sudo pip install openstack-heat

Set Up qemu as the VM Type
Because you’re running a nested installation of OpenStack in a virtual machine,
you need to tell Kolla to use qemu as the hypervisor instead of KVM, the default.
Create a new directory and a configuration file:

$ sudo mkdir -p /etc/kolla/config/nova

Create the file /etc/kolla/config /nova/nova-compute.conf and include
the following:

[libvirt]
virt_type=qemu

Bootstrap the Kolla Containers
You’re now ready to deploy OpenStack! If all the installation steps up to now have
completed without errors, your environment is good to go.

When executing the following commands, be sure to use the version of
kolla-ansible located in the folder you downloaded from GitHub, not the
system version. The system version will not work properly.

Note that you’re instructing the system to bootstrap the “all-in-one” deployment, not
“multinode”. The deploy command can take some time depending on your system
resources and whether you’re using an SSD or spinning disk for storage. Kolla is

https://www.linuxjournal.com

120 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

Figure 4. Each step
offers details as it’s
happening, so you
can follow along and
troubleshoot any
issues.

Figure 5. Run sudo docker ps in a separate shell to follow along as Kolla deploys the
containers it needs to build your OpenStack.

https://www.linuxjournal.com

121 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

launching about 40 Docker containers, so be patient:

$ sudo kolla-ansible/tools/kolla-ansible -i all-in-one
 ↪bootstrap-servers
$ sudo kolla-ansible/tools/kolla-ansible -i all-in-one
 ↪prechecks
$ sudo kolla-ansible/tools/kolla-ansible -i all-in-one
 ↪deploy

Again, the deploy step can take some time—an hour or more. You can follow that
progress by running sudo docker ps from a separate shell. Some containers may
appear to be “stuck” or show lots of restarts. This is normal. Avoid any urge to halt
the install.

When the all-in-one deploy steps complete successfully (failed=0), you may want to
make a snapshot of the VM at this point. It’s a good place to roll back to in case you
run into problems later.

Install the OpenStack Client Tools and Run post-deploy
When the bootstrapping is complete, your OpenStack cluster will be up and
running. It’s actually accessible and usable in its current form, but the Kolla
project provides some additional automation that adds resources and configures
networking for you:

$ sudo pip install python-openstackclient --ignore-installed
 ↪python-glanceclient python-neutronclient
$ sudo kolla-ansible/tools/kolla-ansible post-deploy

Kolla provides an initialization step that brings everything together. The
init-runonce script creates networks, keys and image flavors, among other
things. Be sure to edit the file to match your public network configuration
before proceeding. This way, your OpenStack instances will immediately have
access to your network, not the default, which won’t do you any good if your

https://www.linuxjournal.com

122 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

subnet doesn’t match it:

$ vi kolla-ansible/tools/init-runonce

Edit the following lines to match your own network. Using the previous example
network (10.128.1.0/24), your entries might look like this:

EXT_NET_CIDR='10.128.1.0/24' # This will become public1
EXT_NET_RANGE='start=10.128.1.100,end=10.128.1.149' # These 50
 # addresses will be
 # floating IPs
EXT_NET_GATEWAY='10.128.1.1' # Your network gateway

Run the Final Initialization
This is a good time to take a second snapshot of your Kolla host VM. Once you run
init-runonce in the next step, you can’t roll back.

Figure 6. A sample
of the output from
the init-runonce
script.

https://www.linuxjournal.com

123 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

Start by sourcing the admin user’s openrc.sh file, and then kick off the init script:

$ source /etc/kolla/admin-openrc.sh
$ kolla-ansible/tools/init-runonce

Launch the Horizon Dashboard
If everything goes well, you now have a working OpenStack cluster. You can
access it via Horizon at the kolla_internal_vip_address you set in the /etc/
kolla/globals.yml file (10.128.1.250 in this example):

Figure 7. The
OpenStack Horizon
Login

https://www.linuxjournal.com

124 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

http://kolla_internal_vip_address

Username: admin
Password: $ grep keystone_admin_password
 ↪/etc/kolla/passwords.yml

After a moment, you’ll be taken to the main OpenStack overview dashboard.
Go ahead and explore the interface, including the Compute→Instance and
Network→Network Topology. In the latter, you’ll notice your public network already
configured along with a private subnet and a router that connects them. Also be sure
to look at the Compute→Images, where you’ll see cirros, a small OS you can deploy
immediately as a working instance.

As you explore, try to keep in mind that this whole cluster is running on a single VM,

Figure 8. The OpenStack Horizon Dashboard

https://www.linuxjournal.com

125 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

and it may be slow to respond at times. Be patient, or if you can’t be patient and you
have more resources available, power off the cluster, and add more RAM and CPU to
your virtual machine.

Restarting Your Cluster
If you want to shut down your cluster, be sure there are no running processes (like
an instance in mid-launch), and just issue a sudo poweroff command on the Kolla
host. This will shut down the Docker containers and take everything offline. You also
can issue sudo docker stop $(docker ps -q) to stop all the containers before
shutting down. When you restart the Kolla VM, your OpenStack cluster will take a little
time to restart all the containers, but the system will be intact with all the resources
just as you left them. In most cases, your instances won’t auto-start, so you’ll need to

Figure 9. Launch an instance using the provided cirros qcow2 image.

https://www.linuxjournal.com

126 | August 2019 | https://www.linuxjournal.com

Build a Versatile OpenStack Lab with Kolla

start them from the dashboard. To restart your Kolla cluster after a shut down, you
need to start all the related OpenStack containers. Issue this command to do that:

sudo docker start $(docker ps -q)

This will find all the existing images and start them. ◾

John Tonello is a Global Technical Marketing Manager for SUSE, where he specializes in software-defined infrastructure. He’s been a
Linux user and enthusiast since building his first Slackware system from diskette more than 20 years ago.

Resources
• CentOS 7 Download Page

• Official Kolla Install Guide

• Additional Setup Information (describing Ocata, not Rocky): “Install
and configure OpenStack Ocata with Kolla as a standalone” by Simon
Guyennet

• Set Up Ceph with Kolla

• Cinder Guide

• Netplan How-to

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://www.centos.org/download
https://docs.openstack.org/kolla-ansible/rocky/user/quickstart.html
https://blog.inkubate.io/install-and-configure-openstack-ocata-with-kolla-as-a-standalone
https://blog.inkubate.io/install-and-configure-openstack-ocata-with-kolla-as-a-standalone
https://blog.inkubate.io/install-and-configure-openstack-ocata-with-kolla-as-a-standalone
https://docs.openstack.org/kolla-ansible/pike/reference/external-ceph-guide.html
https://docs.openstack.org/kolla-ansible/rocky/reference/cinder-guide.html
https://netplan.io/examples
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

127 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

Running GNOME in
a Container
Containerizing the GUI separates your work and play.

By Adam Verslype

Virtualization has always been a rich man’s game, and more frugal enthusiasts—unable
to afford fancy server-class components—often struggle to keep up. Linux provides
free high-quality hypervisors, but when you start to throw real workloads at the host,
its resources become saturated quickly. No amount of spare RAM shoved into an old
Dell desktop is going to remedy this situation. If a properly decked-out host is out of
your reach, you might want to consider containers instead.

Instead of virtualizing an entire computer, containers allow parts of the Linux kernel
to be portioned into several pieces. This occurs without the overhead of emulating
hardware or running several identical kernels. A full GUI environment, such as GNOME
Shell can be launched inside a container, with a little gumption.

You can accomplish this through namespaces, a feature built in to the Linux kernel.
An in-depth look at this feature is beyond the scope of this article, but a brief example
sheds light on how these features can create containers. Each kind of namespace
segments a different part of the kernel. The PID namespace, for example, prevents
processes inside the namespace from seeing other processes running in the kernel.
As a result, those processes believe that they are the only ones running on the
computer. Each namespace does the same thing for other areas of the kernel as
well. The mount namespace isolates the filesystem of the processes inside of it. The
network namespace provides a unique network stack to processes running inside of
them. The IPC, user, UTS and cgroup namespaces do the same for those areas of the
kernel as well. When the seven namespaces are combined, the result is a container: an

https://www.linuxjournal.com

128 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

environment isolated enough to believe it is a freestanding Linux system.

Container frameworks will abstract the minutia of configuring namespaces away from
the user, but each framework has a different emphasis. Docker is the most popular
and is designed to run multiple copies of identical containers at scale. LXC/LXD is
meant to create containers easily that mimic particular Linux distributions. In fact,
earlier versions of LXC included a collection of scripts that created the filesystems
of popular distributions. A third option is libvirt’s lxc driver. Contrary to how it may
sound, libvirt-lxc does not use LXC/LXD at all. Instead, the libvirt-lxc driver manipulates
kernel namespaces directly. libvirt-lxc integrates into other tools within the libvirt
suite as well, so the configuration of libvirt-lxc containers resembles those of virtual
machines running in other libvirt drivers instead of a native LXC/LXD container. It is
easy to learn as a result, even if the branding is confusing.

I chose libvirt-lxc for this tutorial for a couple reasons. In the first place, Docker and
LXC/LXD already have published guides for running GNOME Shell inside a container. I
was unable to locate similar documentation for libvirt-lxc. Second, libvirt is the ideal
framework for running containers alongside traditional virtual machines, as they are
both managed through the same set of tools. Third, configuring a container in libvirt-
lxc provides a good lesson in the trade-offs involved in containerization.

The biggest decision to make is whether to run a privileged or unprivileged container.
A privileged container uses the user namespace, and it has identical UIDS both on the
inside of the container as on the outside. As a result, containerized applications run
by a user with administrative privileges could do significant damage if a security hole
allowed it to break out of the container. Given this, running an unprivileged container
may seem like an obvious choice. However, an unprivileged container will not be
able to access the acceleration functions of the GPU. Depending on the container’s
purpose—photo editing, for example—that may not be useful. There is an argument
to be made for running only software you trust in a container, while leaving untrusted
software for the heavier isolation of a proper virtual machine. Although I consider the
GNOME desktop to be trustworthy, I demonstrate creating an unprivileged container
here so the process can be applied when needed.

https://www.linuxjournal.com

129 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

The next thing to decide is whether to use a remote display protocol, like spice
or VNC, or to let the container render its contents into one of the host’s virtual
terminals. Using a display protocol allows access to the container from anywhere and
increases its isolation. On the other hand, there is probably no additional risk from the
container accessing host hardware than from two different processes running outside
a namespace. Again, if the software you are running is untrustworthy, use a full virtual
machine instead. I use the latter option of libvirt-lxc accessing the host’s hardware in
this article.

The last consideration is somewhat smaller. First, libvirt-lxc will not share /run/udev/
data through to the container, which prevents libinput from running inside it (it’s
possible to mount /run, but that causes other problems). You’ll need to write a brief
xorg.conf to use the input devices as a result. Should the arrangement of nodes under
the host’s /dev/input directory ever change, the container configuration and xorg.conf
file will need to be adjusted accordingly. With that all settled, let’s begin.

Prepare the Container Host
A base install of Fedora 29 Workstation includes libvirt, but a couple extra
components are necessary. The libvirt-lxc driver itself needs to be installed. Let’s use
the virt-manager and virt-bootstrap tools to accelerate creation of the container.
There are also some ancillary utilities you’ll need for later. They aren’t necessary, but
they’ll help you monitor the container’s resource utilization. Refer to your package
manager’s documentation, but I ran this:

sudo dnf install libvirt-daemon-driver-lxc virt-manager
 ↪virt-bootstrap virt-top evtest iotop

Note: libvirt-lxc was deprecated as Red Hat Enterprise Linux’s container framework
in version 7.1. It’s still being developed upstream and available to be installed in the
RHEL/Fedora family of distributions.

Before you create the container though, you also need to modify /etc/systemd/
logind.conf to ensure that getty does not start on the virtual terminal you would

https://www.linuxjournal.com

130 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

like to pass to the container. Uncomment the NautoVTs line and set it to 3, so
that it will only start ttys on the first three terminals. Set ReserveVT to 3 so
that it will reserve the third vt instead of the sixth. You’ll need to reboot the
computer after modifying this file. After rebooting, check that getty is active
only on ttys 1 through 3. Change these parameters as your setup requires. The
modified lines of my logind.conf file look like this:

AutoVTs=3
ReserveVT=3

Prepare the Container Filesystem
You can create the container’s filesystem directly through virt-manager, but a couple
tweaks on the command line are needed anyway, so let’s run virt-bootstrap
there as well. virt-bootstrap is a great libvirt tool that downloads base images from
Docker. That gives you a well maintained filesystem for the distribution you’d like
to run in the container. I found that on Fedora 29, I had to turn off SELinux to get
virt-bootstrap to run properly. Additional packages will have to be added to the
Docker base image (such as x.org, and gnome-shell), and some systemd services will
have to be unmasked:

sudo setenforce 0
mkdir container
virt-bootstrap docker://fedora /path/to/container
sudo dnf --installroot /path/to/container install xorg-x11-server-Xorg
xorg-x11-drv-evdev xorg-x11-drv-fbdev gnome-session-xsession xterm
net-tools iputils dhcp-client passwd sudo
sudo chroot /path/to/container
passwd root
#unmask the getty and logind services
cd /etc/systemd/service
rm getty.target
rm systemd-logind.service

https://www.linuxjournal.com

131 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

rm console-getty.service
exit
make sure all of the files in the container are accessible
sudo chown -R user:user /path/to/container
sudo setenforce 1

Note: there are a number of alternative ways to create the operating system
filesystem. Many package managers have options that allow packages to be
installed into a local directory. In dnf, this is the installroot option. In
apt-get, it is the -o Root= option. There is also an alternate tool that works
similar to virt-bootstrap called distrobuilder.

Figure 1. Add the
libvirt-lxc driver to
virt-manager.

https://www.linuxjournal.com

132 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

Create the Container
When you open virt-manager, you’ll see that the lxc hypervisor is missing. You add it
by selecting File from the menu and Add Connection. Select “LXC (Linux Containers)”
from the drop-down, and click Connect. Next, return to the File menu and click New
Virtual Machine.

The first step in making a new virtual machine/container in virt-manager is to select
the hypervisor under which it will run. Select “LXC” and the option for an operating
system container. Click Next.

Figure 2. Make
sure you select
Operating System
Container.

https://www.linuxjournal.com

133 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

virt-bootstrap already has been run, so give virt-manager the location of the
container’s filesystem. Click Next.

Give the container however much CPU and memory is appropriate for its use. For this
container, just leave the defaults. Click Next.

On the final step, click “Customize configuration before install”, and click Finish.

A window will open allowing you to customize the container’s configuration. With the

Figure 3. Enabling the user namespace allows the container to be run unprivileged.

https://www.linuxjournal.com

134 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

Overview option selected, expand the area that says “User Namespace”. Click “Enable
User Namespace”, and type 65336 in the Count field for both User ID and Group ID.
Click apply, then click “Begin Installation”. virt-manager will launch the container. You
aren’t quite ready to go though, so turn off the container, and exit out of libvirt.

You need to modify the container’s configuration in order to share the host’s devices.
Specifically, the target tty (tty6), the loopback tty (tty0), the mouse, keyboard and
framebuffer (/dev/fb0) need entries created in the configuration. Quickly identify
which items under /dev/input are the mouse and keyboard by running sudo evtest
and pressing Ctrl-c after it has enumerated the devices. From the output, I could see
that my mouse is at /dev/input/event3, and my keyboard is /dev/input/event6.

Figure 4. A List of Input Devices on My Workstation

https://www.linuxjournal.com

135 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

You can’t access the /etc/libvirt folder just by using the sudo command. Enter a root
bash session by running sudo bash, and change the directory to /etc/libvirt/lxc. Open
the container’s configuration and scroll down to the device section. You need to add
hostdev tags for each device you just identified. Use the following layout:

<hostdev mode='capabilities' type='misc'>

<source>

<char>/dev/mydevice</char>

</source>

</hostdev>

For my container, I added the following tags:

<hostdev mode='capabilities' type='misc'>
<source>

<char>/dev/tty0</char>

</source>

</hostdev>

<hostdev mode='capabilities' type='misc'>

<source>

<char>/dev/tty6</char>

</source>

https://www.linuxjournal.com

136 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

</hostdev>

<hostdev mode='capabilities' type='misc'>

<source>

<char>/dev/input/event3</char>

</source>

</hostdev>

<hostdev mode='capabilities' type='misc'>

<source>

<char>/dev/input/event6</char>

</source>

</hostdev>

<hostdev mode='capabilities' type='misc'>

<source>

<char>/dev/fb0</char>

</source>

</hostdev>

https://www.linuxjournal.com

137 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

Running the Container
It’s time to start the container! Open it in virt-manger and click the Start button. Once
a container has the option of using the host’s tty, it’s not unusual for it to present the
login prompt only on that tty. So press Ctrl-Alt-F6 to switch over to tty6 and log in
to the container. As I mentioned above, you need to write an xorg.conf with an input
section. For your reference, here’s the one I wrote:

Section "ServerFlags"
Option "AutoAddDevices" "False"
EndSection
Section "InputDevice"
Identifier "event3"
Option "Device" "/dev/input/event3"
Option "AutoServerLayout" "true"
Driver "evdev"
EndSection
Section "InputDevice"
Identifier "event6"
Option "Device" "/dev/input/event6"
Option "AutoServerLayout" "true"
Driver "evdev"
EndSection

Don’t neglect to perform the usual housekeeping a new Linux system requires
with the container. The steps you take will depend on the distribution you run
inside the container, but at the very least, make sure you create a separate user
and add it to the wheel group, and configure the container’s network interface.
With that out of the way, run startx to launch GNOME Shell.

Now that GNOME is running, check on the container’s use of system resources.
Tools like top are not container-aware. In order to get a true impression of the
memory usage of the container, use virt-top instead. Connect virt-top to
the libvirt-lxc driver by running virt-top -c lxc:/// outside the container.

https://www.linuxjournal.com

138 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

Next, run machinectl to get the internal name of the container:

[adam@localhost ~]$ machinectl

MACHINE CLASS SERVICE OS VERSION ADDRESSES

containername container libvirt-lxc - - -

Run machinectl status -l containername to print the container’s process tree.
At the very start of the command’s output, notice the PID of the root process is listed
as the leader. To see how much memory the container is consuming in total, you can
pass the leader PID into top by running top -p leaderpid:

[adam@localhost ~]$ top -p leaderpid
lxc-5016-fedora(c198368a58c54ab5990df62d6cbcffed)

Figure 5. GNOME Shell Running in the Container

https://www.linuxjournal.com

139 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

Since: Mon 2018-12-17 22:03:24 EST; 19min ago

Leader: 5017 (systemd)

Service: libvirt-lxc; class container

Unit: machine-lxc\x2d5016\x2dfedora.scope

[adam@localhost ~]$ top -p 5017

top - 22:43:11 up 1:11, 1 user, load average: 1.57, 1.26, 0.95

Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie

%Cpu(s): 1.4 us, 0.3 sy, 0.0 ni, 98.2 id, 0.0 wa, 0.1 hi,
 ↪0.0 si, 0.0 st

MiB Mem : 15853.3 total, 11622.5 free, 2363.5 used, 1867.4
 ↪buff/cache

MiB Swap: 7992.0 total, 7992.0 free, 0.0 used. 12906.4 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

5017 root 20 0 163.9m 10.5m 8.5m S 0.0 0.1 0:00.22 systemd

The container uses 163MB of virtual memory total—pretty lean compared to the
resources used by a full virtual machine! You can monitor I/O in a similar way by
running sudo iotop -p leaderpid. You can calculate the container’s disk size with
du -h /path/to/container. My fully provisioned container weighed in at 1.4GB.

These numbers obviously will increase as additional software and workloads are given

https://www.linuxjournal.com

140 | August 2019 | https://www.linuxjournal.com

Running GNOME in a Container

to the container. I like having a separate environment to install build dependencies
into, and my most common use for these containers is running gnome-builder. I also
occasionally set up a privileged container to run darktable for photo editing. I edit
photos rarely enough that it doesn’t make sense to keep darktable installed outside
a container, and I find the notion that I could tar the container filesystem up and
re-create it on another computer if I wanted to be reassuring. If you find yourself
strapped for cash and needing to get the most out of your host, consider using a
container instead of a virtual machine. ◾

Adam Verslype is a Systems Administrator in Western Pennsylvania.

Resources
• libvirt-lxc Driver Documentation

• virt-bootstrap on GitHub

• “The TTY demystified” by Linus Akesson

• “The Pros and Cons of Virtualization” by Andreas Rivera

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://libvirt.org/drvlxc.html
https://github.com/virt-manager/virt-bootstrap
https://www.linusakesson.net/programming/tty/
https://www.businessnewsdaily.com/6014-pros-cons-virtualization.html
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

141 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

Writing GitHub Web
Hooks with Bash
Bring your GitHub repository to the next level of functionality.

By Andy Carlson

For the past year since Microsoft has acquired GitHub, I’ve been hosting my
Git repositories on a private server. Although I relished the opportunity and
challenge of setting it all up, and the end product works well for my needs,
doing this was not without its sacrifices. GitHub offers a clean interface for
configuring many Git features that otherwise would require more time and effort
than simply clicking a button. One of the features made easier to implement by
GitHub that I was most fond of was web hooks. A web hook is executed when a
specific event occurs within the GitHub application. Upon execution, data is sent
via an HTTP POST to a specified URL.

This article walks through how to set up a custom web hook, including configuring
a web server, processing the POST data from GitHub and creating a few basic web
hooks using Bash.

Preparing Apache
For the purpose of this project, let’s use the Apache web server to host the
web hook scripts. The module that Apache uses to run server-side shell scripts
is mod_cgi, which is available on major Linux distributions.

Once the module is enabled, it’s time to configure the directory permissions and
virtual host within Apache. Use the /opt/hooks directory to host the web hooks,
and give ownership of this directory to the user that runs Apache. To determine
the user running an Apache instance, run the following command (provided

https://www.linuxjournal.com

142 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

Apache is currently running):

ps -e -o %U%c| grep 'apache2\|httpd'

These commands will return a two-column output containing the name of the
user running Apache and the name of the Apache binary (typically either httpd or
apache2). Grant directory permission with the following chown command (where
USER is the name of the user shown in the previous ps command):

chown -R USER /opt/hooks

Within this directory, two sub-directories will be created: html and cgi-bin. The html
folder will be used as a web root for the virtual host, and cgi-bin will contain all shell
scripts for the virtual host. Be aware that as new sub-directories and files are created
under /opt/hooks, you may need to rerun the above chown to verify proper access to
files and sub-directories.

Here’s the configuration for the virtual host within Apache:

<VirtualHost *:80>
 ServerName SERVERNAME
 ScriptAlias "/cgi-bin" "/opt/hooks/cgi-bin"
 DocumentRoot /opt/hooks/html
</VirtualHost>

Change the value of the ServerName directive from SERVERNAME to the name
of the host that will be accessed via the web hook. This configuration provides
base functionality to host files and executes shell scripts. The DocumentRoot
directive specifies the root of the virtual host using an absolute path on the
local system. The ScriptAlias directive takes two arguments: an absolute path
within the virtual host and an absolute path on the local system. The path within
the virtual host is mapped to the local system path. mod_cgi handles all requests
made to the path specified in the ScriptAlias directive. (Note: any additional

https://www.linuxjournal.com

143 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

configuration including SSL or logging isn’t covered in this article.)

CGI Basics
You’ll need a basic understanding of the HTTP protocol and Bash scripting to
understand how CGI scripts work. When a request is made to an HTTP server,
a response is generated and sent back to the client. The HTTP request contains
headers that instruct the server how to handle the request. Likewise, the
HTTP response contains headers that instruct the client how to handle the
response. Viewing and analyzing HTTP traffic can be very simple using the
developer tools on any modern browser. Here’s a simple example of an HTTP
request and response:

Request:

POST /cgi-bin/clone.cgi HTTP/1.1
Host: hooks.andydoestech.com
Content-length: 86

{"repository":{"name":webhook-test","url":https://github.com/
↪bng44270/webhook-test"}}

Response:

HTTP/1.1 200 OK
Date: Tue, 11 Jun 2019 02:44:52 GMT
Content-Length: 18
Content-Type: text/json

{"success":"true"}

The request is making a POST request to the clone.cgi file located in
http://hooks.andydoestech.com//cgi-bin/. The response contains the response
code, date/time when the request was handled, the length of the content body

https://www.linuxjournal.com

144 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

(in bytes) and the content body itself. Although there are instances when
binary data may be sent via HTTP, the examples in this article deal only with
clear-text transmissions.

Given the robust text-processing capabilities and commands available, Bash
is well suited for constructing and manipulating the text in an HTTP transaction.
If the above HTTP request were to be handled by a Bash script, it might look
like this:

#!/bin/bash

JSONPOST="$(cat -)"

echo "Date: $(date)"
echo "Content-Length: 18"
echo "Content-Type: text/json"
echo ""
echo "{\"success\":\"true\"}"

Although this script is lacking in logic, it nicely illustrates how the HTTP POST data is
captured as the JSONPOST variable, and how the HTTP response headers and data are
returned to the client via standard script output.

Parsing JSON
Although many GitHub resources can trigger web hooks, this article focuses
specifically on the push event that fires when data is remotely pushed into a code
repository. When the HTTP POST request of a web hook is made, a JSON object
is posted to the URL. This JSON object contains many pieces of information
relating to the push operation, including information about the repository and
commits contained in the data push. The command to parse individual values
out of the POST JSON is jq, which is available on major Linux distributions.
The syntax for the command requires the desired property to be specified in
dot notation. As an example, consider the following snippet of the JSON object

https://www.linuxjournal.com

145 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

returned from GitHub:

{
 "repository": {
 "name": "webhook-test",
 "git_url": "git://github.com/bng44270/webhook-test.git",
 "ssh_url": "git@github.com:bng44270/webhook-test.git",
 "clone_url": "https://github.com/bng44270/webhook-test.git",
 }
}

To return the value of the attribute named clone_url using jq, you would use the
following syntax:

jq -r '.repository.clone_url' <<< 'JSON'

After replacing JSON with the text representation of the JSON object, this command
would return the HTTP repository clone URL. Using command substitution, the value
of a JSON attribute can be assigned to a Bash variable for use within a script.

Hook #1: Simple Backup
The first hook I want to cover will create a backup of the repository on the Apache
server hosting the web hook scripts. The above VirtualHost configuration will be used
in this example. Here’s the repository backup web hook script:

1 #!/bin/bash
2
3 REPODIR="/opt/hooks/html/repos"
4
5 json_resp() {
6 echo '{"result":"'"$([[$1 -eq 0]] && echo "success"
 ↪|| echo "failure")"'"}'
7 }

https://www.linuxjournal.com

146 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

8
9 POSTJSON="$(cat -)"
10
11 REPOURL="$(jq -r ".repository.clone_url" <<< "$POSTJSON")"
12 REPONAME="$(jq -r ".repository.name" <<< "$POSTJSON")"
13
14 echo "Content-type: text/json"
15 echo ""
16
17 if [-d $REPODIR/$REPONAME]; then
18 pushd .
19 cd $REPODIR/$REPONAME
20 git pull
21 json_resp $?
22 popd
23 else
24 mkdir $REPODIR/$REPONAME
25 git clone $REPOURL $REPODIR/$REPONAME
26 json_resp $?
27 fi

The REPODIR variable at the beginning of the script indicates the directory that
will contain all repository directories. The json_resp function allows the code
that generates a JSON response to be reused multiple times in the script. Just
like in the example above, the HTTP POST data is captured in the POSTJSON
variable. In lines 11 and 12, the clone_url and name attributes are pulled from
the POSTJSON variable using jq. Line 14 begins the creation of HTTP response
headers. The if block on lines 17–27 determines whether the repository already
has been cloned. If it has, the script moves to the repository folder, pulls down
repository changes and returns to the original working directory. If the folder
does not exist, the directory is created, and the repository is cloned to the new
directory. Note the use of the $REPODIR variable that was set at the beginning
of the script. Whether the repositor is cloned or updates are pulled down, the

https://www.linuxjournal.com

147 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

json_resp function is called to generate the response JSON, which will contain
a single attribute named “success” with a value of “true” or “false” depending on
the outcome of the respective git commands.

Hook #2: Build and Package
Backing up repositories can be useful. With the vast number of build tools
available on the command line, it makes sense to create a web hook that will
deliver a built package for code in a repository. This could be built out into a
robust solution filling the need for Continuous Integration/Deployment (CI/CD).
Here’s the build/deploy web hook script:

1 #!/bin/bash
2
3 WEBROOT="/opt/hooks/html/archive"
4 REPODIR="/opt/hooks/html/repos"
5 WEBURL="http://hooks.andydoestech.com/archive"
6
7 json_package() {
8 echo '{"result":"'$([[$1 -eq 0]] && echo
 ↪"\"success\",\"url\":\"$1\"" ||
 ↪echo "\"package failure\"")"'}'
� }
10
11 run_make() {
12 [[-d $REPODIR/$REPONAME/build]] && make -s -C
 ↪$REPODIR/$REPONAME clean
13 if [$1 -eq 0]; then
14 make -s -C $REPODIR/$REPONAME
15 if [-d $REPODIR/$REPONAME/build]; then
16 FILENAME="$REPONAME-$COMMITTIME.tar.gz"
17 tar -czf $WEBROOT/$FILENAME -C
 ↪$REPODIR/$REPONAME/build .
18 json_package "$?" "$WEBURL/$FILENAME"

https://www.linuxjournal.com

148 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

19 else
20 echo '{"result":"build failure"}'
21 fi
22 else
23 echo '{"result":"clone/pull failure"}'
24 fi
25 }
26
27 POSTJSON="$(cat -)"
28
29 REPOURL="$(jq -r ".repository.url" <<< "$POSTJSON")"
30 REPONAME="$(jq -r ".repository.name" <<< "$POSTJSON")"
31 COMMITTIME="$(jq -r '.commits[0].timestamp' <<<
 ↪"$POSTJSON" | date -d "$(cat -)" +"%m-%d-%YT%H-%M-%S")"
32
33 echo "Content-type: text/json"
34 echo ""
35
36 if [-d $REPODIR/$REPONAME]; then
37 pushd .
38 cd $REPODIR/$REPONAME
39 git pull
40 run_make $?
41 popd
42 else
43 mkdir $REPODIR/$REPONAME
44 git clone $REPOURL $REPODIR/$REPONAME
45 run_make $?
46 fi

In a similar manner to Hook #1, variables are defined at the beginning of the
script to specify the directory where repositories will be cloned, the directory
where build packages will be stored and the base URL of build packages. The

https://www.linuxjournal.com

149 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

two functions defined on lines 7–25 will be used later in the script. Lines 27–31
are capturing the JSON POST data and parsing out attributes into shell variables
using jq. Note that the format of the date in COMMITTIME is being modified from
its original form (this will make sense later). Lines 33–46 are almost identical to
Hook #1 in terms of setting HTTP headers and cloning /pulling repository with an
addition of a call to the run_make function. The return status of the clone/pull is
passed to the run_make function. If the clone/pull ran successfully, the function
assumes there is a Makefile in the root of the repository. The Makefile is assumed
to behave in the following manner:

• When make is executed, the solution is built into a folder named “build” within
the repository.

• When make clean is executed, the “build” folder is deleted.

Beginning on line 12, if the build folder exists, make clean is executed to
remove it. If the make in line 13 is successful, an archive filename is constructed
using REPONAME and COMMITTIME. Note that the value of COMMITTIME contains
no spaces for a proper filename. The status code of the tar command on
line 17 is passed into the json_package function. If the archive was created
successfully, a JSON object containing two JSON attributes are defined: result
is set to “success”, and url is set to the URL of the archive. If the archive was
unable to be created, the result attribute is set to “package failure”.

GitHub provides many features, but without question, web hooks provides
the DevOps engineer with tools to accomplish almost any task. Leveraging the
functionality of Apache with CGI and Bash scripting in such a way that it can be
consumed by GitHub allows for almost endless possibilities. ◾

Andy Carlson has worked in IT for the past 15 years doing networking and server administration along with occasional coding. He is
thankful to have chosen a career that he loves, grows in and learns from. He currently resides in Cincinnati, Ohio, with his wife, three
daughters and his son. His family is currently in the process of adopting two children internationally. He enjoys playing the guitar,
coding, and spending time with family and friends.

https://www.linuxjournal.com

150 | August 2019 | https://www.linuxjournal.com

Writing GitHub Web Hooks with Bash

Resources
For more information on topics mentioned in this article, refer to the
following links:

• Github Web Hooks Documentation

• Apache mod_alias (contains ScriptAlias directive)

• Apache mod_cgi

• “Building a Bare-Bones Git Environment” by Andy Carlson, LJ, July 2018

https://developer.github.com/webhooks
https://httpd.apache.org/docs/2.4/mod/mod_alias.html
https://httpd.apache.org/docs/2.4/mod/mod_cgi.html
https://www.linuxjournal.com/content/building-bare-bones-git-environment
https://www.linuxjournal.com

151 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

Words, Words,
Words—Introducing
OpenSearchServer
How to create your own search engine combined with a crawler that
will index all sorts of documents.

By Marcel Gagné

In William Shakespeare’s Hamlet, one of my favorite plays, Prince Hamlet is
approached by Polonius, chief counselor to Claudius, King of Denmark, who
happens to be Hamlet’s stepfather, and uncle, and the new husband of his mother,
Queen Gertrude, whose recently deceased last husband was the previous King of
Denmark. That would be Hamlet’s biological father for those who might be having
trouble following along. He was King Hamlet. Polonius, I probably should mention,
is also the father of Hamlet’s sweetheart, Ophelia. Despite this hilarious sounding
setup, Hamlet is most definitely not a comedy. (Note: if you need a refresher, you
can read Hamlet here.)

For reasons I won’t go into here, Hamlet is doing a great job of trying to convince
people that he’s completely lost it and is pretending to be reading a book when
Polonius approaches and asks, “What do you read, my lord?”

Hamlet replies by saying, “’Words, words, words.” In other words, ahem, nothing of
any importance, you annoying little man.

Shakespeare wrote a lot of words. In fact, writers, businesses and organizations of
any size tend to amass a lot of words in the form of countless documents, many of

http://www.shakespeare-online.com/plays/hamletscenes.html
https://www.linuxjournal.com

152 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

which seem to contain a great deal of importance at the time they are written and
subsequently stored on some lonely corporate server. There, locked in their digital
prisons, these many texts await the day when somebody will seek out their wisdom.
Trouble is, there are so many of them, in many different formats, often with titles that
tell you nothing about the content inside. What you need is a search engine.

Google is a pretty awesome search engine, but it’s not for everybody, especially if the
documents in question aren’t meant for consumption by the public at large. For those
times, you need your own search engine, combined with a crawler that will index all
sorts of documents, from OpenDocument format, to old Microsoft Docs, to PDFs and
even plain text. That’s where OpenSearchServer comes into play. OpenSearchServer
is, as the name implies, an open-source project designed to perform the function of
crawling through and indexing large collections of documents, such as you would find
on a website.

I’m going to show you how to go about getting this documentation site set up from
scratch so that you can see all the steps. You may, of course, already have a web
server up and running, and that’s fine. I’ve gone ahead and spun up a Linode server
running Ubuntu 18.04 LTS. This is a great way to get a server up and running quickly
without spending a lot of money if you don’t want to, and if you’ve never done this,
it’s also kind of fun.

First, you’re going to need a web server, and since I usually install Apache, today I’m
going to go with nginx for a change:

sudo apt install nginx

This is going to be a fairly simple setup, since you’ll be running only one website on
this server. You still need to make sure the configuration for the server is correct,
since you’ll have a whole collection of documents to store on this server. In the spirit
of this article, I created a DNS entry for my server, which I’ve called “thebard”, and
placed it under my domain. So, to get this server up and running, I create a host
configuration file, referred to as a “server block” under the /etc/nginx/conf.d directory,

https://www.linuxjournal.com

153 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

called thebard.marcelgagne.com.conf.

Using your favorite text editor (for example, vim), edit the file to look something
like this:

server {
 listen 80;
 listen [::]:80;
 server_name thebard.marcelgagne.com;
 root /var/www/thebard;
 index index.html;
 gzip on;
 gzip_comp_level 3;
 gzip_types text/plain text/css application/javascript
image/*;
}

If you’re following along, you’re obviously going to assign server_name
something other than what I did. Furthermore, you can use any folder you want
for your files. I created a directory called thebard to store my documents under
the classic /var/www. Nginx’s default user, on Ubuntu anyhow, is www-data, so
you’ll want to change ownership of whatever directory you chose, so that the
files belong to that user and group:

chown -R www-data:www-data /var/www/thebard

One last thing and you’re ready to go. To make sure everything works, create a tiny
index.html file for the default directory:

<html>
 <head>
 <title>My Shakespearean Site</title>
 </head>

https://www.linuxjournal.com

154 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

 <body>
 <H1>You are here and so am I.</H1>
 </body>
</html>

And now, let’s start/restart the nginx server:

service nginx restart

If all has gone well up to this point, you can visit your server using your favorite web
browser (Figure 1).

You’re going to want a place for all these documents to live. For that, I’ve created a
directory under the root of this server called “Documents”. I know; it’s original. In that
folder, I’ve transferred a number of classic documents in various formats. To view the
files under the directory, you’re going to add a small paragraph to the server block

Figure 1.
So far so good.

https://www.linuxjournal.com

155 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

created above. Just before the final bracket, add this paragraph:

location /Documents {
 autoindex on;
 }

Save the file and restart the nginx process, then point your browser to
http://yourserver.dom/Documents. You should see a directory listing like the
one shown in Figure 2.

Pretend for a moment, that you have the entire catalog of Shakespeare’s works here

Figure 2. The Bard’s Documents

https://www.linuxjournal.com

156 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

instead of the handful I added for demonstration. Add to that a few thousand other
documents, and it starts to look like a good reason for a search engine that can index
all of those things. Your own organization or company (or yourself, if you’re a writer)
may have hundreds and even several thousand documents. Furthermore, those
documents likely will be in a variety of formats, which is why I uploaded versions in
PDF, Microsoft Word and plain-old text for my demonstration.

So let’s install that search engine, shall we?

From the OpenSearchServer site at http://www.opensearchserver.com, download
the latest package for your particular distribution. The code for OpenSearchServer

Figure 3. The Default OpenSearchServer Front Page

http://www.opensearchserver.com/
https://www.linuxjournal.com

157 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

is written in Java, so to make it all work, you’re also going to need a recent JDK. Let’s
install both now:

sudo apt install openjdk-8-jdk
sudo dpkg -i opensearchserver-1.5.14-d0d167e.deb

Once installed, you can just start the server like this:

sudo service opensearchserver start

It does take a few seconds for the server to start up, so you might want to grab
something to drink here. By default, OpenSearchServer runs on port 9090,
but you can change that default by editing /etc/opensearchserver and changing
SERVER_PORT=9090 to something that suits your particular network. If you

Figure 4. Creating an Index

https://www.linuxjournal.com

158 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

do, make sure you restart the opensearchserver before you try connecting.
Assuming the default port, pointing your browser to http://yourserver.dom:9090
should give you something that looks like Figure 3.

This is where things get even more exciting. On that first page, notice where it says
“Index name”, where you are invited to “Create a new index” (see close up Figure 4).
You can call your index whatever you like, but I’m calling mine “ManyWords”, not
to be confused with ManyWorlds, which I’d use if I were creating an index of all
the documents written about the Many World Interpretation (MWI) of quantum
mechanics. But, I digress.

Directly under the Index name, there’s a drop-down from which you can define the
type of index you are creating. Select “web crawler” as the type. Click Create, and
in a few seconds, you’ll have an empty index on which to start building your search
database. You also may notice that there are now a number of additional tabs
running along the top that were not there before (Figure 5).

Go ahead and click the “Crawler” tab. Doing this will once again open up another
large group of tabs. It’s at this point that you are probably starting to think
there’s an awful lot to this OpenSearchServer, and you would be right. I’m going
to concentrate on just the basics here so you can get your search engine up and
running quickly.

Front and center, there’s a tab labeled “Pattern list”, and this is where you’re going
to tell the crawler how and where to crawl. Several examples are included as a

Figure 5. Tabs, tabs, tabs—once created, the new index generates many new options.

https://www.linuxjournal.com

159 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

guide, but the simplest thing to do is tell the system to crawl everything from the
domain root on down. You do that by entering http://yourdomain.dom/* where
the “*” means “index everything” (Figure 6). Now, click “Add”. If you don’t want
to index the entire site, or you want to index more than one site, specify only the
paths you want. Keep adding paths until you’ve defined everything you want. I
should point out that since, in my terribly simple website, my Documents directory
isn’t linked to any HTML file in my root, I also need to add that to the pattern list.

As soon as you do this, you’re ready to start the magic. Click the “Crawl process”
tab where you’ll see a number of parameters that define how the web crawler will
do its job. Here you can specify a name for your user agent (what you’ll see in
server logs), the number of URLs to crawl, the number of simultaneous threads
to use, the maximum depth in terms of website subdirectories, how long to wait
in between each access to the site, and much more. For now, let’s just go with the

Figure 6. Defining the Search Pattern for the Index

https://www.linuxjournal.com

160 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

defaults as shown in Figure 7.

Notice the section near the bottom labeled “Current status”. If this is your first
index, the crawler isn’t yet running. Look to the right of that section, and you’ll see
a drop box with the words, “Run Forever”, which is what you want if the content on
your site is likely to change. When you’re happy with the choices, click the “Click to
run” button.

Once crawling starts, it may take some time to run. The OpenSearchServer
engine does need to parse every one of the various files it finds as it goes, and
the bigger your site, the longer that will take. You can keep an eye on how things
are doing by scrolling below the “Current status” section shown in Figure 7 to

Figure 7. Define the parameters for your Web crawler, then click to run.

https://www.linuxjournal.com

161 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

where the crawler statistics are displayed (Figure 8).

Eventually, the crawler will finish its job and you’ll want to search your site,
and this is where I need to discuss renderers. Click back on the main tab near
the top, the one that bears the name of the index you created. (In my case,
that’s “ManyWords”.) This will collapse several tab bars and take you back to
the top to the options specific to that index. Click the tab labeled “Renderer”.

Figure 8. Watching the Progress of Index-Building

Figure 9. A Default Search Renderer Already Exists

https://www.linuxjournal.com

162 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

OpenSearchServer helpfully creates a “default” renderer for “search” (Figure 9).

As you’ll see shortly, the default renderer is quite plain. It’s basically an empty
search box with a button labeled “Search” to the right of it. To dress up the
search form, you can click the “Edit” button, and I’ll give you an example of what
you can do there in a moment. For now, click on the View button to bring up
the default search form (Figure 10) where you’ll ask the engine to search for the
word, “words”.

As I write this, my crawler is still doing its job, so I’m getting only a handful of
results, but the index will build over time. Let’s take that time to dress up the
renderer by clicking the Edit button and filling in something for the header and

Figure 10. It works! The search engine renders results, but they’re plain.

https://www.linuxjournal.com

163 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

footer (Figure 11).

At the bottom, on the main Edit tab, there’s a section for “Header HTML” and
for “Footer HTML”. I won’t pretend to be the world’s best (or thousandth best)
website creator, so forgive my rather simple attempts at dressing up my web
search form. Starting with the header, I might do the following:

<header width:100%><h2>%nbsp;</h2></header>
<img src="http://proman-erp.com/sites/default/files/
↪ProMan_logo_150.png" hspace=5 vspace=2>
<p>

The HTML footer, much simpler, looks like this:

<footer width:100%><h2>Merely this, and nothing
 ↪more.</h2></footer>

Figure 11. Editing the renderer HTML to create a better-looking search page.

https://www.linuxjournal.com

164 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

That’s it. And yes, I know that last line is Poe and not Shakespeare.

What does the search form look like now? Take a look at Figure 12 for the
finished product.

Not bad, if I do say so myself. And, this is where I will leave you. As the Bard,
William Shakespeare, might have said, I bid you good night, sweet Princes and
Princesses. May flights of penguins sing you to sleep with their sweet songs.

What? Penguins don’t fly? This video from the BBC disagrees with you.

Next thing you know, you’ll be telling me penguins don’t sing and dance either.

Figure 12. The Finished Search Form

https://youtu.be/9dfWzp7rYR4
https://www.linuxjournal.com

165 | August 2019 | https://www.linuxjournal.com

Words, Words, Words—Introducing OpenSearchServer

Until next time! ◾

Marcel Gagné is Writer and Free Thinker at Large. The Cooking With Linux guy. Ruggedly handsome! Science, Linux and technology
geek. Occasionally opinionated. Always confused. Loves wine, food, music and the occasional single malt Scotch.

Figure 13. Flying Penguins

http://www.cookingwithlinux.com/
https://www.linuxjournal.com

Glyn Moody has been writing
about the internet since 1994,
and about free software since
1995. In 1997, he wrote the first
mainstream feature about
GNU/Linux and free software,
which appeared in Wired. In
2001, his book Rebel Code:
Linux And The Open Source
Revolution was published.
Since then, he has written
widely about free software
and digital rights. He has
a blog, and he is active on
social media: @glynmoody
on Twitter or identi.ca, and
+glynmoody on Google+.

OPEN SAUCE

Open Source
Is Good, but
How Can It Do
Good?
Open-source coders: we know you are good—now
do good.

By Glyn Moody

The ethical use of computers has been at the heart of free
software from the beginning. Here’s what Richard Stallman told
me when I interviewed him in 1999 for my book Rebel Code:

The free software movement is basically a movement for
freedom. It’s based on values that are not purely material
and practical. It’s based on the idea that freedom is a
benefit in itself. And that being allowed to be part of a
community is a benefit in itself, having neighbors who can
help you, who are free to help you—they are not told that
they are pirates if they help you—is a benefit in itself, and
that that’s even more important than how powerful and
reliable your software is.

The Open Source world may not be so explicit about the
underlying ethical aspect, but most coders probably would

166 | August 2019 | https://www.linuxjournal.com

https://www.wired.com/1997/08/linux-5
http://opendotdotdot.blogspot.com/
https://twitter.com/glynmoody
https://identi.ca/glynmoody
https://plus.google.com/+glynmoody
https://stallman.org/
https://en.wikipedia.org/wiki/Rebel_Code
https://www.linuxjournal.com

167 | August 2019 | https://www.linuxjournal.com

OPEN SAUCE

hope that their programming makes the world a better place. Now that the core
technical challenge of how to write good, world-beating open-source code largely
has been met, there’s another, trickier challenge: how to write open-source code that
does good.

One obvious way is to create software that boosts good causes directly. A recent
article on opensource.com discussed eight projects that are working in the area
of the environment. Helping to tackle the climate crisis and other environmental
challenges with free software is an obvious way to make the world better in a literal
sense, and on a massive scale. Particularly notable is Greenpeace’s Platform 4—not
just open-source software, but an entire platform for doing good. And external
coders are welcome:

Co-develop Planet 4!

Planet 4 is 100% open source. If you would like to get involved and show us what
you’ve got, you’re very welcome to join us.

Every coder can contribute to the success of P4 by joining forces to code
features, review plugins or special functionalities. The help of Greenpeace offices
with extra capacity and of the open source community is most welcome!

This is a great model for doing good with open source, by helping established groups
build powerful codebases that have an impact on a global scale. In addition, it creates
communities of like-minded free software programmers interested in applying their
skills to that end. The Greenpeace approach to developing its new platform, usefully
mapped out on the site, provides a template for other organizations that want to
change the world with the help of ethical coders.

There’s a similar site that provides guidelines for those working in the area of
international development. One of its key principles is “Use Open Standards, Open
Data, Open Source, and Open Innovation”. As that underlines, alongside open source,
there are other major open movements that are critically important for making the

https://opensource.com/
https://opensource.com/article/19/4/environment-projects
https://opensource.com/article/19/4/environment-projects
https://planet4.greenpeace.org/community/#partners-open-sourcers
https://planet4.greenpeace.org/community/#partners-open-sourcers
https://medium.com/planet4
https://medium.com/planet4
https://digitalprinciples.org/
https://digitalprinciples.org/principle/use-open-standards-open-data-open-source-and-open-innovation/
https://www.linuxjournal.com

168 | August 2019 | https://www.linuxjournal.com

OPEN SAUCE

world a better place. These include open data, open access, open science and open
standards. For anyone in the Open Source community who wants to have a real impact
on the world, working with these other “opens” is a great option. Writing code for
these sibling movements has another important benefit: it strengthens the whole open
ecosystem and confirms the power of distributed development in many different fields.

Those are all very general ways of helping good causes. For some people though,
that might be too diffuse and vague. They might want to help a highly targeted project
that is trying to solve a particular problem. There are plenty of them these days,
discoverable with a bit of online searching. For example, if you are worried about the
decline of magnificent animals like elephants—and who isn’t?—you might be highly
motivated to start coding for something like the Open Collar Initiative:

We want the development of wildlife monitoring collars to enter the world of
the cooperative, Internet-based community. By making the collars’ hardware and
software and other information available online, we aim to attract and inspire
talented students, researchers, and tech-savvy conservationists to develop tracking
systems that are more customizable and a better fit for use on different animals.

The big advantage of helping out with these projects is that an individual free software
programmer’s contribution might be limited in absolute terms, and yet provide a
relatively massive boost because the number of people helping out is small.

Finally, it’s worth noting that there is another, rather novel way of trying to make
the world a better place using open source, albeit indirectly, by means of its
infrastructure. A group of tech activists recently issued a call for action using GitHub,
asking for “digital protesters” to post a prepared message to Palantir’s GitHub boards.
The action was in response to allegations that Palantir’s software has been used
to help deport families of migrant children at the Mexican border. The idea was to
draw attention to the issue, and to persuade the company to change.

Nor is this the only example of people turning to GitHub to flag social problems and
push for solutions. In China, a group of coders set up the GitHub repository called

https://opencollar.io/
https://www.fastcompany.com/90348304/exclusive-tech-workers-organize-protest-against-palantir-on-the-github-coding-platform
https://www.fastcompany.com/90348304/exclusive-tech-workers-organize-protest-against-palantir-on-the-github-coding-platform
https://github.com/996icu/996.ICU
https://www.linuxjournal.com

169 | August 2019 | https://www.linuxjournal.com

OPEN SAUCE

996.ICU. The name refers to the punishing work culture in many digital companies in
China, where coders are expected to work from 9am to 9pm, six days a week—“996”.
As for the ICU part, it refers to the Intensive Care Unit where people may end up if
they don’t break free of the 996 culture. One of the ways the group hopes to fight
996 culture is by using the “Anti 996” License. It’s a permissive software license in
most respects, but its key element is that it requires users of code released under the
license to “strictly comply with all applicable laws, regulations, rules and standards of
the jurisdiction relating to labor and employment”.

That goes against the generally accepted requirement that free software must be
freely available for anyone—including companies that try to impose a 996 culture on
their workers. But, it’s undeniably a clever idea. It’s just one of ways programmers are
going beyond doing good coding with open source, and using it to do good. ◾

Send comments or feedback
via http://www.linuxjournal.com/contact
or email ljeditor@linuxjournal.com.

https://github.com/996icu/996.ICU
https://github.com/996icu/996.ICU/blob/master/LICENSE
http://www.linuxjournal.com/contact
mailto:ljeditor@linuxjournal.com
https://www.linuxjournal.com

GEEK GUIDE f Calculating the ROI of DevSecOps

2

About the Sponsor ..4

Introduction ..5

DevSecOps ...6

Why DevSecOps? ..6

Containers ..9

The Benefits of Continers ..9

Container Adoption ..11

Container Security Considerations ..14

A Return on Investment? ..15

Where Does the Money Go? ..16

Bringing the Sec to DevSecOps19

Summary ...23

Table of Contents

GEEK GUIDE f Calculating the ROI of DevSecOps

3

GEEK GUIDES:
Mission-critical information for the most technical people on
the planet.

Copyright Statement
© 2019 Linux Journal. All rights reserved.

This site/publication contains materials that have been created, developed or

commissioned by, and published with the permission of, Linux Journal (the “Materials”),

and this site and any such Materials are protected by international copyright and

trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

TITLE AND NON-INFRINGEMENT. The Materials are subject to change without

notice and do not represent a commitment on the part of Linux Journal or its Web site

sponsors. In no event shall Linux Journal or its sponsors be held liable for technical

or editorial errors or omissions contained in the Materials, including without limitation,

for any direct, indirect, incidental, special, exemplary or consequential damages

whatsoever resulting from the use of any information contained in the Materials.

No part of the Materials (including but not limited to the text, images, audio and/or

video) may be copied, reproduced, republished, uploaded, posted, transmitted or

distributed in any way, in whole or in part, except as permitted under Sections 107

& 108 of the 1976 United States Copyright Act, without the express written consent

of the publisher. One copy may be downloaded for your personal, noncommercial

use on a single computer. In connection with such use, you may not modify or

obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the

property of third parties. You are not permitted to use these trademarks, services

marks or logos without prior written consent of such third parties.

Linux Journal and the Linux Journal logo are registered in the US Patent & Trademark

Office. All other product or service names are the property of their respective owners. If

you have any questions about these terms, or if you would like information about licensing

materials from Linux Journal, please contact us via e-mail at info@linuxjournal.com.

GEEK GUIDE f Calculating the ROI of DevSecOps

4

About the Sponsor

Palo Alto Networks’ mission is to protect our way of life in the

digital age by preventing cyberattacks with our pioneering Security

Operating Platform, providing highly effective cybersecurity in the

cloud, across networks, and for mobile devices.

https://www.paloaltonetworks.com/cloud-security

GEEK GUIDE f Calculating the ROI of DevSecOps

5

Introduction
In the beginning came DevOps. By streamlining both

Software Development and IT Operations, it merged

two extremely important roles to deliver software

effectively and efficiently. The DevOps role shortened the

development l ifecycle to deliver vital bug fixes, software

updates and much needed features quickly. DevOps

reduced the bottleneck of the entire process with the

exception of one key component: security.

Calculating
the ROI of
DevSecOps
 PETROS KOUTOUPIS

GEEK GUIDE f Calculating the ROI of DevSecOps

6

DevSecOps
DevSecOps expands beyond the practice of DevOps

by introducing the practice and mindset of security into

the process. Its primary goal is to distribute security

decisions safely at the necessary speed and scale while

not sacrificing the required security. Remember, DevOps is

centered around development and operations. If you need

to take advantage of both the agility and responsiveness

that DevOps offers, security needs to play a role in the

software lifecycle.

Why DevSecOps? Typically, security becomes an

afterthought in the software development/delivery lifecycle,

and it’s often pushed off to the final stages of the process.

Before the DevOps concept emerged, when the entire

process consumed many months to even years, this was

not considered problematic. Now that more companies have

adopted Continuous Delivery/Continuous Integration (CD/CI)

models, releases tend to occur a lot more frequently. I’m

talking about weeks, if not days, before a new revision of an

application drops into the public domain. Waiting until the

very last minute to ensure that the application is safe and

secure to deploy destroys the entire process and potentially

could derail the delivery of the application. What could have

been a few weeks, might end up being a few months of

development, testing and integration.

What does DevSecOps look like? Basically with

GEEK GUIDE f Calculating the ROI of DevSecOps

7

DevSecOps, security is designed into the application or

feature at the onset of the process. A good strategy is

to determine risk tolerance and conduct a risk analysis

of a given feature. How much security are you willing to

provide the feature? And how consistent are you going

to be with that requirement throughout the lifecycle of

that same feature? Now, what happens when you scale

that model across multiple features, sometimes being

worked on simultaneously? Automation certainly will help

out a lot here. Ideally, this automation would maintain

short and frequent development models while also

integrating your security measures with minimal to no

disruptions to your operations.

DevSecOps introduces many other advantages, including

but not limited to the following:

n	 Increased speed and agil ity for security teams.

n	 Decreased response time to address change and needs.

n	 Increased or better collaboration and communication

across teams.

n	 Increased opportunities for automated builds and

quality assurance testing.

n	 Early identification of vulnerabilities in application code.

GEEK GUIDE f Calculating the ROI of DevSecOps

8

n	 Resources and talent are freed to work on

high-value work.

DevSecOps is a critical component in markets where

software updates already are performed multiple times a

day. Older security models just cannot keep up.

The six most important components that make up the

DevSecOps approach are:

1. The ability to deliver code in small chunks so

vulnerabilities are identified quickly.

2. Increased speed and efficiency to source code

management, determining whether a recently submitted

change is good or bad.

3. Being in a constant state of compliance (that is,

audit-ready).

4. The ability to identify potential emerging threats with every

code update and then being able to respond quickly.

5. The ability to identify new vulnerabilities with code

analysis and then being able to understand how to

respond and patch the affected code.

6. Always being up to date with training engineers on

GEEK GUIDE f Calculating the ROI of DevSecOps

9

security guidelines for set routines.

Some may argue that the “security” piece is nothing more

than a mindset or philosophy. Even if that were the case,

a large part of the challenge is identifying risks early on

and using the right tools to guide you through the entire

process—from the very beginning to the very end.

Containers
Containers and container technologies have redefined the

way many organizations conduct business. The technology

brings unprecedented agility and scalability. It should

come as no surprise that container technologies are widely

adopted and continue to thrive in the wild. They even form

the foundations to many of the cloud native, mobile and

cross-platform applications that we take for granted today.

Knowing this, it does raise the question, how can you be

sure that each deployment is safe and secured?

The Benefits of Containers To recap, containers decouple

software applications or services (often referred to as

microservices) from the operating system, which gives users

a clean and minimal Linux environment while running the

desired application(s) in one or more isolated “containers”.

Containers were and still are an ideal technology for the

ability to isolate processes within a respective container.

This process isolation prevents a misbehaving application in

one container from affecting processes running in another

GEEK GUIDE f Calculating the ROI of DevSecOps

10

container. Also, containerized services are designed not to

influence or disturb the host machine.

Another key feature of containers is portability. This is

typically accomplished by abstracting away the networking,

storage and operating system details from the application,

resulting in a truly configuration-independent application,

guaranteeing that the application’s environment always will

remain the same, regardless of the machine on which it is

enabled. With an orchestration framework behind it, one

or more container images can be deployed simultaneously

and at scale.

Containers are designed to benefit both developers and

system administrators. The technology has made itself

an integral part of many DevOps toolchains. Developers

can focus on writing code without having to worry about

the system ultimately hosting it. There is no need to

install and configure complex databases or worry about

switching between incompatible language toolchain

versions. Containers streamline software delivery and give

the operations staff flexibility, often reducing the number of

physical systems needed to host some of the smaller and

more basic applications.

The beauty of containers is that they are completely

platform-agnostic. As a result of their portability, they can

be deployed on-premises in local data centers or out in the

GEEK GUIDE f Calculating the ROI of DevSecOps

11

cloud. Under the same management framework, they can

be managed and monitored seamlessly across both hybrid

and multi-cloud environments. You even can run containers

within virtual machines or serverless in cloud native

applications. The possibilities are endless.

Container Adoption According to a 2018 survey conducted

by the Gartner research firm, by the year 2020, more than

50% of the IT organizations that were surveyed will be using

container technologies. This is up from less than 20% in

the 2017 survey. Without a doubt these and many other

organizations are seeing the value in using containers.

In addition, a 2017 Forrester report, “Containers: Real

Adoption and Use Cases in 2017”, commissioned by Dell

EMC, Intel and Red Hat, revealed that of the 195 US/

European managers or IT decision-makers responsible

for public/private cloud decisions surveyed, at least 63%

used containers with more than 100 instances deployed.

That number was projected to grow in the coming years.

The very same survey listed “security” as the number one

roadblock to container technology deployment (37%).

Think about it. A “build once, run everywhere” application

can be affected (alongside the many other container

applications) by an infected or vulnerable kernel hosting

it. It also can be affected by the applications and libraries

it’s packaged with. This would not be the case in a virtual

https://www.gartner.com/en/documents/3865408-survey-analysis-container-adoption-and-deployment-20180
https://www.gartner.com/en/documents/3865408-survey-analysis-container-adoption-and-deployment-20180
https://www.dell.com/learn/us/en/04/business~solutions~whitepapers~en/documents~containers_real_adoption_2017_dell_emc_forrester_paper.pdf

GEEK GUIDE f Calculating the ROI of DevSecOps

12

machine, as the application would be fully isolated from

the other(s). And now that more workloads have moved

to the cloud, where organizations have less control over

the system(s) hosting their containers and cloud native

applications, this becomes more of a risk.

What’s driving this adoption?

A Portworx “2018 Container

Adoption Survey” may provide

the answer. Out of the 519 IT

professionals that were surveyed,

nearly 82% were already running

container technologies, and 84%

of those who were running them

were running them in production.

And of those, 30.2% claimed it

was to enable their applications

to run on multiple cloud platforms

and to avoid vendor lock-in. The

rest stated that it was to increase

developer efficiency (32.3%),

save on their infrastructure costs

(25.9%) and support microservices architectures (11.6%).

For those hosting their containers in the cloud, 12.8% were

running them in three separate clouds (Google + Azure +

AWS), while 22.5% were running them in two clouds (AWS +

Google, Google + Azure or Azure + AWS).

FIGURE 1. IT Professionals

Already Using Container

Technologies

https://portworx.com/wp-content/uploads/2018/12/Portworx-Container-Adoption-Survey-Report-2018.pdf
https://portworx.com/wp-content/uploads/2018/12/Portworx-Container-Adoption-Survey-Report-2018.pdf

GEEK GUIDE f Calculating the ROI of DevSecOps

13

FIGURE 2. Reasons for Using Containers

FIGURE 3. Single or Multicloud Deployments of Containers

GEEK GUIDE f Calculating the ROI of DevSecOps

14

Container Security Considerations Although container

technologies bring an added layer of security for running

applications in an isolated environment, containers alone are

not an alternative to taking proper security measures. Unlike

traditional hypervisors, a container can have a more direct

path to the host operating system’s kernel, which is why it is

standard procedure to drop privileges as quickly as possible

and run all the services as non-root wherever possible. Also,

note that whenever a containerized process requires access

to the underlying filesystem, you should make it a good habit

of mounting that filesystem as read-only.

The state of a container image also raises concern, which

is why it’s improper to run containers (be it Docker or

anything else) from an untrusted source. When deploying

an unknown or unofficial image, you increase the risk of

running vulnerable or buggy code in your environment.

And if that container is configured to host a privileged

process, any attack exposing a potential vulnerability

eventually could cost the data center an entire host system

(and maybe more).

There also exists the potential for a container to run system

binaries that it probably shouldn’t be touching in the first

place, at least without your knowledge. Another similar

scenario is when a rogue application or attacker gains

container access through an application vulnerability and

replaces some of the underlying system binaries with one

GEEK GUIDE f Calculating the ROI of DevSecOps

15

that does not belong or was not intended to run in that

container image—all of which will continue to run during the

life of that container. This can result in additional system

and network compromises or worse.

Having the right tools to enable the Sec in DevSecOps

will go a long way and can potentially save your firm or

your customer tons of hours of headache (and downtime),

and in turn, lots of dollars to repair the damage done.

Damage is not confined only to software or data. It can

also destroy reputation.

A Return on Investment?
Costs are one of the key factors to container adoption. At

least, that’s what 37% of respondents stated according

to the Survata “Container Adoption and Drivers” survey

conducted in 2016. Another 21% cited the increase in

frequency of software releases. Regardless of how you

look at it, the main takeaway is a decrease in spending and

increase in profit.

Clearly, if it were not for the many benefits, industries would

not be deploying container technologies. Such benefits

cited in the same survey include improved flexibility for

IT infrastructure (63%), overall IT cost savings (53%),

increased speed/productivity for developers deploying code

(52%), greater responsiveness to business needs (40%) and

more ROI from the cloud (38%).

https://surveys.survata.com/public/71b5df41-01da-46a2-8404-e4401c50ba70/container-adoption-and-drivers

GEEK GUIDE f Calculating the ROI of DevSecOps

16

At the time, two-thirds of IT professionals expected

their company to save at least 16% on IT costs by using

containers, while one-fifth indicated that their savings would

exceed 30%.

Where Does the Money Go? At the end of the day, the initial

investment into building a container-friendly infrastructure

can be quite expensive. Costs include the following:

n	 Commercially supported and managed container products.

n	 The hardware servers, storage, network switches and

so forth.

n	 Container orchestration/management tools (to enable

multi-cloud or hybrid clusters).

n	 The hardware and software to support and manage the

image registry.

n	 Experienced personnel to manage/maintain and even

consult or design the services around containers.

I’m talking about an up-front Capex with an ongoing Opex

here, much like any other technology deployment inside the

data center. Either way, it’s important to assess the ROI for

these Capex and Opex charges.

GEEK GUIDE f Calculating the ROI of DevSecOps

17

Digging deeper into the key aspects of a container-friendly

infrastructure, you need to consider the following aspects

of containers:

n	 Runtime engine: the runtime engine operates and

manages (for example, clone, suspend and snapshot)

the deployed container. Often, you will find container

runtime engines included in modern operating system

distributions and virtualization platforms.

n	 Image repository: an image repository will provide a

single location for container image distribution. It also

will provide long-term storage and version control for

those same container images.

n	 Orchestration framework or workload manager: a

container management system (such as Kubernetes,

OpenShift, Rancher and so on) will automate the

deployment of container images across multiple hosts,

balance workloads across those systems, restart

containers on crashes and provision additional copies of

a container to handles increased application usage.

n	 Virtual network overlay: to enable inter-container

communication, you must enable a virtual network

overlay over shared physical network interfaces.

n	 Hardware infrastructure: one of the most important

GEEK GUIDE f Calculating the ROI of DevSecOps

18

pieces to building a container-friendly infrastructure

is provisioning and configuring the right amount of

hardware with the right amount of horsepower and

enough room for expansion or growth. At the end

of the day, no matter how abstracted a container is

from the underlying hardware, the application itself

must eventually be deployed on physical (or virtual)

machines—that is, servers, switches and storage

systems to hold the persistent application data. These

workloads can live on-premises, in one or more public

clouds or both, which leads to a significant investment

in meta-management tools to manage those same

workloads across multiple disparate platforms.

n	 Support and expertise: various elements are required

to run production-scale container deployments. And

although the previous sections of this ebook cover a

large portion of the upfront costs involved in deploying

container technologies either locally, in the cloud or

both, there will be a time when you need to make an

investment on the operations piece to support the

infrastructure, and finding the talent to maintain or debug

said infrastructure can be a challenge all on its own.

Most organizations tend to seek consultants or vendor

professional services to assist with container strategies,

architectural design, implementation and support.

Once you make all the investments to define, implement,

GEEK GUIDE f Calculating the ROI of DevSecOps

19

secure and support a container-ready infrastructure

properly, ROI will immediately follow. The amount of

time it takes for a return on that investment is reduced

further once you enable the security piece of DevSecOps.

It’s simple. The less resources spent on investigating,

debugging and addressing production code, the less money

spent in general.

Bringing the Sec to DevSecOps
Now, what do you look for to add security to your

DevOps ecosystem? You’ll need a product that focuses

on container security across an application’s l ifecycle—

FIGURE 4. The Kubernetes Web UI Dashboard Source: kubernetes.io

GEEK GUIDE f Calculating the ROI of DevSecOps

20

one that’s fully committed to providing enterprise security

with DevSecOps agil ity and able to integrate with any

modern CI tool or registry. It also should be designed to

be deployed alongside your virtual machines, containers

and cloud native applications.

I’m talking about an end-to-end security solution built for

containerized environments that protects against software

exploits, malware and active threats through its advanced

intelligence and machine-learning capabilities. One that

will profile expected container behavior automatically, and

create and enforce security models at runtime. The goal

would be to build security models of expected behavior and

enforce them automatically via whitelisting. Ideally, security

can be introduced much earlier in the development lifecycle

to identify and block threats from developer workstations

through to production.

The following are some key features to look for:

n	 Runtime protection: defends your containers against

detected exploits, compromises, application flaws and

configuration errors, and actively monitors container

activities and detects policy violations. With reporting of

all anomalous behaviors while also taking the appropriate

actions to disconnect or isolate them, runtime protection

prevents disruption to any and all other containers

across the Kubernetes cluster (or other workload

GEEK GUIDE f Calculating the ROI of DevSecOps

21

manager). The solution should identify when a container

does something it shouldn’t be doing. For instance, if a

container running nginx suddenly invokes netstat, and

netstat isn’t a whitelisted process for that image, the

security platform should detect it.

n	 Vulnerability management: constant scanning of

container images in registries, workstations and servers

for known vulnerabilities and misconfigurations is a

must with detected vulnerabilities being reported. How

nice would it be to break the Docker image apart and

parse each individual layer, specifically searching for

these threats? The platform would take remediation

actions based on the severity of the vulnerability during

runtime and provide users with granular control when

managing the types of vulnerabilities beyond their

severity ratings. You can block individual CVEs explicitly

while ignoring others.

n	 Continuous integration: to integrate directly into your

CI process (such as Jenkins). This way, it can find and

report problems before they ever make it into production.

In some cases, when a package with an open CVE is

reported, it would be an excellent feature to receive a

report with the package version that has the fix, giving

developers clear insight into the vulnerabilities present in

every build. These plugins should allow you to define and

enforce your vulnerability policies at build time.

GEEK GUIDE f Calculating the ROI of DevSecOps

22

n	 Compliance: the Center for Internet Security (CIS)

Docker and CIS Kubernetes Benchmarks provide

guidance for establishing a secure configuration of a

Docker container. In short, this benchmark provides

the best security practices for deploying Docker.

Having a solution with built-in checks to validate the

recommended practices from this benchmark is another

must. In parallel to this, the solution should include

an extensive list of configuration checks for the host

machine, Docker dæmon, Docker files and directories.

Organizations would be able to enforce Trusted

Registries and Trusted Images. And when configured, it

should enforce that the images from these trusted lists

are the only ones deployed on production servers.

n	 Cloud native firewalls: as workloads move to hybrid

or cloud deployments, you’ll need a platform to enable

security teams to move beyond the manual management

of whitelisted IP addresses by offering firewalls for cloud

native environments—that is, having both layer 3 and

layer 7 firewalls that automatically learn the network

topology of your applications and provide application-

tailored microsegmentation for all of your microservices.

n	 Access control: the ability to define and enforce

policies governing user access to both container and

workload management resources, limiting specific users

to individual functions or APIs. This allows you to specify

GEEK GUIDE f Calculating the ROI of DevSecOps

23

access policies to container resources without the need

to create new identities and groups. You can monitor

detailed user access audit trails, action types, services

requested and more from the console.

n	 Analytics: to visualize all relevant data and enable you

to enforce standard configurations, container best

practices and recommend deployment templates. This

way your containers will remain compliant to industry or

company policies.

Summary
DevSecOps is a natural and necessary response to the

bottleneck effect introduced by older security models layered

on top of modern CD pipelines. Its goal is to bridge the

gap between IT and security while also ensuring fast and

safe delivery of code. It is meant to address the security

concerns in every phase of the development lifecycle. As

more organizations rely on containerized applications to keep

operations up and running, security efforts outside traditional

methods are crucial to prevent costly downtimes. n

PETROS KOUTOUPIS, LJ Editor at Large, is currently a senior performance

software engineer at Cray for its Lustre High Performance File System division.

He is also the creator and maintainer of the RapidDisk Project. Petros has

worked in the data storage industry for well over a decade and has helped

pioneer the many technologies unleashed in the wild today.

