

 Table of Contents

 The High-Performance Computing Issue by Bryan Lunduke

 From the Editor—Doc Searls

 How Can We Bring FOSS to the Virtual World?

 Letters

 UPFRONT

 Auto-Download Linux Journal Each Month by Mitch Frazier

 FOSS Project Spotlight: Appaserver by Tim Riley

 Patreon and Linux Journal

 Using Linux for Logic by Joey Bernard

 Lessons in Vendor Lock-in: Messaging by Kyle Rankin

 Reality 2.0: a Linux Journal Podcast

 News Briefs

 Columns

 Kyle Rankin's Hack and /

 Travel Laptop Tips in Practice

 Reuven M. Lerner's At the Forge

 Testing Your Code with Python's pytest, Part II

 Dave Taylor's Work the Shell

 More Roman Numerals and Bash

 Zack Brown's diff -u

 What's New in Kernel Development

 Glyn Moody's Open Sauce

 Open Science Means Open Source―Or, at Least, It Should

 Deep Dive: High-Performance Computing

 Linux and Supercomputers by Bryan Lunduke

 As we sit here, in the year Two Thousand and Eighteen (better known as "the future, where the robots live"), our beloved Linux is the undisputed king of supercomputing. Of the top 500 supercomputers in the world, approximately zero of them don't run Linux (give or take...zero).

 Data in a Flash, Part I: the Evolution of Disk Storage and an Introduction to NVMe by Petros Koutoupis

 NVMe drives have paved the way for computing at stellar speeds, but the technology didn't suddenly appear overnight. It was through an evolutionary process that we now rely on the very performant SSD for our primary storage tier.

 Data in a Flash, Part II: Using NVMe Drives and Creating an NVMe over Fabrics Network by Petros Koutoupis

 By design, NVMe drives are intended to provide local access to the machines they are plugged in to; however, the NVMe over Fabric specification seeks to address this very limitation by enabling remote network access to that same device.

 Articles

 Photography and Linux by Carlos Echenique

 Is it possible for a professional photographer to use a FOSS-based workflow?

 Beaker: the Decentralized Read-Write Browser by Michael McCallister

 The best future of the internet may be peer-to-peer. The Beaker Browser offers a glimpse.

 LINUX JOURNAL | MASTHEAD

 [image: 33429.png]

 [image: ljlogo_masthd.eps]

 Editor in Chief — Doc Searls, doc@linuxjournal.com

 Executive Editor — Jill Franklin, jill@linuxjournal.com

Deputy Editor — Bryan Lunduke, bryan@lunduke.com

 Tech Editor — Kyle Rankin, lj@greenfly.net

 Associate Editor — Shawn Powers, shawn@linuxjournal.com

 Contributing Editor — Petros Koutoupis, petros@linux.com

 Contributing Editor — Zach Brown, zacharyb@gmail.com

 Senior Columnist — Reuven Lerner, reuven@lerner.co.il

 Senior Columnist — Dave Taylor, dave@linuxjournal.com

 Publisher — Carlie Fairchild, publisher@linuxjournal.com

 Associate Publisher — Mark Irgang, mark@linuxjournal.com

 Director of Digital Experience — Katherine Druckman, katherine@linuxjournal.com

 Graphic Designer — Garrick Antikajian, artwork@linuxjournal.com

 Accountant — Candy Beauchamp, acct@linuxjournal.com

 Community Advisory Board

 	John Abreau, Boston Linux & UNIX Group

 	John Alexander, Shropshire Linux User Group

 	Robert Belnap, Classic Hackers UGA Users Group

 	Aaron Chantrill, Bellingham Linux Users Group

 	Lawrence D'Oliveiro, Waikato Linux Users Group

	Chris Ebenezer, Silicon Corridor Linux User Group

 	David Egts, Akron Linux Users Group

 	Michael Fox, Peterborough Linux User Group

 	Braddock Gaskill, San Gabriel Valley Linux Users' Group

 	Roy Lindauer, Reno Linux Users Group

 	Scott Murphy, Ottawa Canada Linux Users Group

 	Andrew Pam, Linux Users of Victoria

	Bob Proulx, Northern Colorado Linux User Group

 	Ian Sacklow, Capital District Linux Users Group

 	Ron Singh, Kitchener-Waterloo Linux User Group

 	Jeff Smith, Kitchener-Waterloo Linux User Group

 	Matt Smith, North Bay Linux Users' Group

 	James Snyder, Kent Linux User Group

 	Paul Tansom, Portsmouth and South East Hampshire Linux User Group

 	Gary Turner, Dayton Linux Users Group

 	Sam Williams, Rock River Linux Users Group

 	Stephen Worley, Linux Users' Group at North Carolina State University

 	Lukas Yoder, Linux Users Group at Georgia Tech

 Linux Journal is published by, and is a registered trade name of, Linux Journal, LLC.

 4643 S. Ulster St. Ste 1120 Denver, CO 80237 USA

 LINUX is a registered trademark of Linus Torvalds.

 At Your Service

 SUBSCRIPTIONS: Linux Journal is available as a digital magazine in PDF, EPUB, and MOBI formats. Renewing your subscription, changing your e-mail address for issue delivery, paying your invoice, viewing your account details or other subscription inquiries can be done instantly on-line: http://www.linuxjournal.com/subscribe. E-mail us at subs@linuxjournal.com or reach us via postal mail at Linux Journal, 9597 Jones Rd, #331, Houston, TX 77065 USA. Please remember to include your complete name and address when contacting us.

 ACCESSING THE DIGITAL ARCHIVE: Your monthly download notifications will have links to the various formats and to the digital archive. To access the digital archive at any time, log in at http://www.linuxjournal.com/digital.

 LETTERS TO THE EDITOR: We welcome your letters and encourage you to submit them at http://www.linuxjournal.com/contact or mail them to Linux Journal, 9597 Jones Rd, #331, Houston, TX 77065 USA. Letters may be edited for space and clarity.

 SPONSORSHIP: We take digital privacy and digital responsibility seriously. We've wiped off all old advertising from Linux Journal and are starting with a clean slate. Ads we feature will no longer be of the spying kind you find on most sites, generally called "adtech". The one form of advertising we have brought back is sponsorship. That's where advertisers support Linux Journal because they like what we do and want to reach our readers in general. At their best, ads in a publication and on a site like Linux Journal provide useful information as well as financial support. There is symbiosis there. For further information, email: sponsorship@linuxjournal.com or call +1-281-944-5188.

 WRITING FOR US: We always are looking for contributed articles, tutorials and real-world stories for the magazine. An author’s guide, a list of topics and due dates can be found on-line: http://www.linuxjournal.com/author.

 FREE e-NEWSLETTERS: Linux Journal editors publish newsletters on both a weekly and monthly basis. Receive late-breaking news, technical tips and tricks, an inside look at upcoming issues and links to in-depth stories featured on http://www.linuxjournal.com. Subscribe for free today: http://www.linuxjournal.com/enewsletters.

 [image: PIA_logo]

 Private Internet Access is a proud sponsor of Linux Journal.

 LINUX JOURNAL (ISSN 1075-3583) is published monthly by Linux Journal, LLC., 9597 Jones Rd, #331, Houston, TX 77065 USA. Subscription rate is $34.50/year. Subscriptions start with the next issue.

The High-Performance Computing Issue

Since the dawn of computing, hardware engineers have had one goal that's stood out above all
the rest: speed. By Bryan Lunduke

Sure, computers have many other important qualities (size, power consumption, price and so on), but
nothing captures our attention like the never-ending quest for faster hardware (and software to power
it). Faster drives. Faster RAM. Faster processors. Speed, speed and more speed. [Insert manly
grunting sounds here.]

What's the first thing that happens when a new CPU is released? Benchmarks to compare it against the
last batch of processors.

What happens when a graphics card is unveiled? Reviewers quickly load up whatever the most
graphically demanding video game is and see just how it stacks up to the competition in frame-rate and
resolution. Power and speed captures the attention of everyone from software engineers to gamers
alike.

Nowhere is this never-ending quest for speed more apparent than in the high-performance computing
(HPC) space. Built to handle some of the most computationally demanding work ever conceived by man,
these supercomputers are growing faster by the day—and Linux is right there, powering just about
all of them.

In this issue of Linux Journal, we take a stroll through the history of supercomputers, from its
beginnings (long before Linux was a gleam in Linus Torvalds' eye...heck, long before Linus Torvalds
was gleam in his parents' eyes) all the way to the present day where Linux absolutely dominates the
Supercomputer and HPC world.

Then we take a deep dive into one of the most critical components of computing (affecting both desktop
and supercomputers alike): storage.

Petros Koutoupis, Senior Platform Architect on IBM's Cloud Object Storage, creator of RapidDisk
(Linux kernel modules for RAM drives and caching) and LJ Editor at Large, gives an overview of the history of computer
storage leading up to the current, ultra-fast SSD and NVMe drives.

Once you're up to speed (see what I did there?) on NVMe storage, Petros then gives a
detailed—step-by-step—walk-through of how to best utilize NVMe drives with Linux, including how to set up your
system to have remote access to NVMe resources over a network, which is just plain cool.

Taking a break from talking about the fastest computers the Universe has ever known, let's turn our
attention to a task that almost every single one of us tackles at least occasionally.

Photography.

Professional photographer Carlos Echenique provides an answer to the age-old question: is it
possible for a professional photographer to use a FOSS-based workflow? (Spoiler: the answer is yes.)

Carlos walks through his entire setup in detail. The hardware he selected, the free and open-source
software he uses and his workflow from end to end. This month's cover story is a complete blueprint for a
real-world-tested, Linux-based photography setup—for professional or hobbyist usage. The next time one of
your Mac or Windows friends tries to tell you "Linux can't be used for photography or design work",
just point them right here.

And then drop the mic.

If no microphone is available, I recommend picking up whatever is immediately to your right and
dropping that as if it were a mic. Red Swingline stapler. Cup of coffee. A cat. The point is,
something needs to be dropped. Because Linux is awesome.

 About the Author

Bryan Lunduke is a former Software Tester, former Programmer, former VP of
Technology, former Linux Marketing Guy (tm), former openSUSE Board
Member...and current Deputy Editor of Linux Journal as well as host of the
(aptly named) Lunduke Show.

[image: Bryan Lunduke]

From the Editor: How Can We Bring FOSS to the Virtual World?

Is there room for FOSS in the AI, VR, AR, MR, ML and XR revolutions—or
vice versa? By Doc Searls

Will the free and open-source revolution end when our most personal computing
happens inside the walled gardens of proprietary AI VR, AR, MR, ML and XR companies?
I ask, because that's the plan.

I could see that plan when I met the Magic Leap One at IIW in October (only a few days ago as I write
this). The ML1 (my abbreviation) gave me an MR (mixed reality) experience when I wore
all of this:

	Lightwear (a headset).

	Control (a handset).

	Lightpack (electronics in a smooth disc about the size of a saucer).

So far, all Magic Leap offers is a Creator Edition. That was the one I met. Its
price is $2,295, revealed only at the end of a registration gauntlet that requires
name, email address, birth date and agreement with two click-wrap contracts
totaling more than 7,000 words apiece. Here's what the page with the price says you
get:

Magic Leap One Creator Edition is a lightweight, wearable computer that seamlessly
blends the digital and physical worlds, allowing digital content to coexist with real
world objects and the people around you. It sees what you see and uses its
understanding of surroundings and context to create unbelievably believable
experiences.

Also recommended on the same page are a shoulder strap ($30), a USB (or USB-like)
dongle ($60) and a "fit kit" ($40), bringing the full price to $2,425.

Buying all this is the cost of entry for chefs working in the kitchen, serving
apps and experiences to customers paying to play inside Magic Leap's walled garden: a
market Magic Leaps hopes will be massive, given an investment sum that now totals
close to $2 billion.

The experience it created for me, thanks to the work of one early developer, was
with a school of digital fish swimming virtually in my physical world. Think of a
hologram without a screen. I could walk through them, reach out and make them
scatter, and otherwise interact with them. It was a nice demo, but far from anything
I might crave.

But I wondered, given Magic Leap's secretive and far-advanced tech, if it could
eventually make me crave things. I ask because immersive doesn't
cover what this tech does. A better adjective might be invasive.

See, the Lightwear headset has cameras facing both outward at the physical world
and inward at your eyes (each of which, as the saying goes, is a "window to your
soul"). The outward ones take in your physical world, while the inward ones
profile your eyeballs and project those 3D images directly onto the retinas of your
eyes. They do that using "light wave" (aka "waveguide") technology. The
control has onboard electronics (such as GPS) and connections to Magic Leap's
cloud, which, I am told, map both the users and their physical environments to maximal
depths, surely for purposes far beyond what any of us can guess at.

I'll spare you other details, most of which you can read about elsewhere. (One
place to start: Karl Guttag's Magic Leap
One — FOV and Tunnel Vision.) I have learned enough, so far, to make two
points:

	Magic Leap's MR experience is of a proprietary and closed digital world
mixed with the free and open physical one.

	No matter how appealing they may be, proprietary and closed digital
worlds are all quarantined futures. And maybe this is a good thing, because it limits
the degrees to which it can infect the open world where most useful development takes
place.

Those quarantined futures are modeled currently by the video game industry.
Nearly all electronic gaming in the world today happens with closed and proprietary
applications running on closed and proprietary hardware. The main exception to that
is a conditional one: Windows games running on the same kind of open hardware most
Linux developers and users run. But hey, it's still on Windows, which remains a
closed and proprietary platform, even though it can run on open hardware.

And yes, there are native games that run on Linux, and Windows ones you can run in
emulation. We've been
covering both of those here in Linux Journal for decades. Still, those
are beside my point here, which is that the electronic gaming industry is a vast
mosaic of walled gardens. On the MR front, in addition to Magic Leap, there's Windows Mixed
Reality (formerly Microsoft HoloLens), HTC Vive, Lenovo Daydream Mirage, Oculus Rift, Sony Playstation VR and Samsung Gear VR.

Each points toward a future that presumably requires massive investments in
science and manufacture: investments that can be recouped only by trapping
customers inside corporate gardens, each walled in by patents, proprietary commercial
licenses and restrictive one-sided agreements between owners of those gardens and
their paying visitors.

So the smart guess is that the primary use for all of them will be gaming. I won't
wish them good luck with that, because they'll have it. What they won't have is any
more leverage into the open world than we already see with gaming on headset-less
hardware—in other words, limited and likely to stay that way. In its quarantined
state, the gaming world has thrived in blissful near-oblivity to the FOSS world that
grew outside its gardens—for going on 50 years. (The first video game console was
the Magnavox Odyssey,
released in 1972, and built to run on the open-source hardware of its time:
televisions.)

Our job in this space is to write and build the tech required for a free and open
digital world we can mix with the free and open physical one we entered at birth. In
other words, we need to do for all those two-letter acronyms what Linus did for UNIX
with Linux.

Can we do that at a time when nearly all the big bucks are flowing to
companies making closed worlds, each on the old proprietary mainframe model that
personal computing, the internet and the web were all designed to obsolesce?

My first source of optimism in that midst is Liam
Broza, (@LiamBroza), co-founder of Bitscoop Labs and main developer of LifeScope. He's the guy who brought the Magic Leap
One to IIW, treated a bunch of us to experiences with it, and salted those
experiences with dark warnings about what will likely become of our virtual worlds if
only tech's scary giants and their billionaire friends provide them.

I love that Bitscoop and LifeScope aren't just about FOSS, but start, as Linus
did, with the individual. Says the home page, "Control of your personal data is a
human right. LifeScope is an open platform for personal data whereby ownership is
returned to the user." LifeScope's Manifesto goes farther. Here's the whole
thing:

Built by millions of individuals for everyone to use

The internet is the single most inspiring achievement of engineering and
collaboration in human history. Contained within the internet's data is both the
promise of enriching the human condition as well as the danger of spreading
misinformation, seeding divisiveness, and propagating mass manipulation. Our photos,
emails, social media, biometrics, geolocation, and more tell the story of us. It is
our personal contribution to the global scale dataset of human interaction. But each
of us can only see and control a small fraction of the overwhelming data cloud we
give off. We have left a record of reality in a digital memory we can't
trust.

Silicon Valley can't be trusted with our history

We create everything on the internet, but we have power over none of it. Large
organizations gather our individual data to understand and control our psychographic
and psychometric profiles. Incumbent powers use machine learning to gain insights and
influence over our behavior to advance their own agenda. A handful of giant companies
are centralizing command of the internet, and our courts and government are going
along with it. We, as a civilization, are at a crossroads between Black Mirror and
Star Trek.

There is a better way

By incorporating the power of big data, blockchain, and machine learning,
LifeScope gives everyone a perfect digital memory allowing a truly objective
reflection of themselves. As our data become more organized we become more
directionalized. We are seeing a million fold efficiency in human understanding. Who
am I? How do we fit together? Data can give us better answers. Trustworthy, complete,
and organized data can tell our true story. Freedom, privacy, decentralization, and
openness are the values that drive us. We aim to work together with people and
organizations everywhere who share these goals to restore trust and restore control
over our personal data.

In the FOSS tradition, @LifescopeLabs on Twitter throws credit
toward developers of a similar mind, for example, @Mozilla, @MozillaReality (the Mozilla mixed
reality team), @TensorFlow ("a fast,
flexible, and scalable open-source machine learning library for research and
production") and other allies, including @Sketchfab ("the largest platform to publish
and find 3D models online"), @MongoDB and
@GraphQl.

Liam presented his Bitscoop and LifeScope work both at IIW (see Sessions 4 and 5
for Thursday, 25
October) and VRM Day (which ProjectVRM held in advance of IIW). A talk he gave
in July is on YouTube here.
His slides from that talk are here.
I advise checking out all of it. (That's him at IIW in the photo, by the
whiteboard where he detailed the open foundations of his work.)

[image: Liam Broza]

Liam
Broza, Co-founder of Bitscoop Labs and Main Developer of Lifescope

The same goes for everything Evo Heyning (@EvoHeyning, @amoration) touches: Light Lodges(@LightLodges), XRStudio (@XRStudioSF), @PlayFiles, Toyshoppe Systems (@TSSystems), ExO Works (@Exo_Works), Hyperledger (@hyperledger), ExO Lever (@theExOLever), Unity (@Unity3D) and much more. She's my second
source on all this stuff (to which I am still very new). When I asked her by email to
review a draft of this piece, she encouraged me to stress the importance of WebXR,
calling it "the open web solution to walled gardens," adding, "Mozilla's Hubs and
Spoke are just one example—we will see many of the main tech players publishing
to WebXR directly in the future." When I asked for more context on WebXR, she
replied:

WebXR today probably feels like UNIX early on....the forks are experimental as
hackers try to build tools and platforms on top of the open source code. It's a bit
early web wild Westworld in terms of consistent immersive experiences across
interfaces. Fully 4D interactive experiences on URLs will flip content and media
models as much as YouTube & Netflix changed TV but that will take us through the
next decade to realize. 5G<ubiquity. Smartglasses with full HUDs change our data
integration equation and you are right—it's invasive and deeply intimate.

Others working in personal AI and adjacent spaces are being added to and updated
frequently on ProjectVRM's VRM Development
Work page as well. Please check those out too, and let us know what you think.
Better yet, tell us what you're working on. If it's free and open, we need it.

 About the Author

 Doc Searls is a veteran journalist, author and part-time academic who spent more than two decades elsewhere on the Linux Journal masthead before becoming Editor in Chief when the magazine was reborn in January 2018. His two books are The Cluetrain Manifesto, which he co-wrote for Basic Books in 2000 and updated in 2010, and The Intention Economy: When Customers Take Charge, which he wrote for Harvard Business Review Press in 2012. On the academic front, Doc runs ProjectVRM, hosted at Harvard's Berkman Klein Center for Internet and Society, where he served as a fellow from 2006–2010. He was also a visiting scholar at NYU's graduate school of journalism from 2012–2014, and he has been a fellow at UC Santa Barbara's Center for Information Technology and Society since 2006, studying the internet as a form of infrastructure.

[image: Doc Searls]

Letters

Pets vs. Cattle

Kyle Rankin's September
Upfront piece implored us cloud users to "stop killing
our cattle" and keep our troubleshooting skills fresh. However, in a
production context, the priority is to minimize downtime, and it's not
usually clear how to reproduce the same problem in a testing deployment
that tends to be less provisioned with data and traffic. When our web
architect moved on to another position, they gave as a mantra:
"If it's not working, redeploy it and hope for the best." And without
their considerable troubleshooting skills at hand, that advice has indeed
served us well, although there has also been plenty of troubleshooting
as well. As we as an industry keep building layers and layers of
infrastructure and code, the prospect of knowing even where to
start looking is daunting. Network config? Middleware version?
Any breadcrumbs in the logs? Any breadcrumbs in the browser console? Any
recent code changes that smell bad? Which brings all this back to the
web/agile paradigm—make it work, launch/update as soon as possible,
and fix the rough edges later. But the cost of fixing it later seems to be
ever increasing. Too bad for the cattle along the way.

—Nigel Stewart

Firefox and VPN: in Response to Mozilla's Announcement that ProtonVPN Will Be Sold through Firefox
Browser

Okay, so let's get the disclaimer out of
the way, I'm founder of a new VPN service called SomaVPN—we're based on
Wireguard and IKEv2, not the old and potentially dangerous OpenVPN.

When I read the announcement this morning, I was a bit shocked but not
surprised. Mozilla has been scrambling for a sustainable business model for
years. I thought that the recent deal with Google for search—the "go-to"
business model for browsers nowadays—would be enough, so I found this
latest move surprising.

Upon further review, I changed my mind. Why? Okay, so let's dissect this a
bit. At Soma, we find any digital interaction, particularly online, to be
dangerous. We view smartphones, digital assistant speakers, all IoT devices
and the web in particular, as hostile environments that people unbeknownst
to themselves choose or are forced to interact with. With that in mind, Mozilla
is absolutely right in acknowledging the need for everyone to use a VPN. On
the other hand, making the choice for the user by advertising it
exclusively and in such a prominent manner—unlike the addons on their
extensions page—is a bit disingenuous since they're partners in the deal.

Mind you, I'm not even mentioning the fact that from a tech perspective,
offering ProtonVPN is a horrible choice. At Soma, we view all VPN providers
even more skeptically than Google or Facebook—but not the ISPs—since
all the traffic goes through it. Trust is the life and blood of all VPN
businesses. When we decided to be a part of this ecosystem, we always
conceived of the service as one we would use ourselves. I don't trust
anyone, and I couldn't ask anyone else to trust SomaVPN entirely either. So
we've done what no other VPN provider AFAIK does, we give the option to
skip the monthly subscription and own a trimmed-down VPN server—based on
the open-sourced, and much better than Mozilla's choice, AlgoVPN. They pay us
$10 and off they go, no need to trust us. You own your own shit, but we
won't support it. Moreover, a portion of that money goes back to Jason
Donenfeld at Wireguard, AlgoVPN and the other open-source projects we
utilize and that make SomaVPN possible.

I hope this gives you our perspective on Mozilla's move. There's much more
to say, but this gives you the gist of it. If you have any additional
questions, feel free to reach out.

—Jose

Concerns

I am deeply concerned about the things that are going on in the GNU/Linux world.

1) Nobody seems too bothered that Linus Torvalds stepped aside after a complaint
that has only to do with interpretations on how he runs the kernel management.
We know there are a lot of egos in our computer world, but no one has ever
complained about a discussion and how it has been done. I hope he follows a
course and will be back soon.

2) About systemd and Red Hat: it seems it wants to take over the Open
Source community by forcing systemd in our throat.

My prime concern is the way systemd handles a problem: it reboots the
whole computer/server no matter what else is running. It seems as if Linux is
being taken over by Microsoft, that is now on the board of the Linux Foundation.
It behaves as a Microsoft OS. THIS IS NOT WHAT WE WANT.

I want a system that only reboots the service that misbehaves—not all the
other systems too.

I do not want to be dependent on one supplier that dictates how things are
running.
If Red Hat aka Microsoft (because they have too shares in it) wants this
behaviour, let them implement it in their version of their Linux, and let's see
how far they get.

I decided I'd return to Openrc and changed my OS version to Gentoo. I
abandoned all Debian, Ubuntu, Red Hat and derivatives that use systemd. And
I suggest you do that too if you still want a free choice of system.

What about the Intel problem Linus Torvalds uttered his concern about? It
is still not solved. And AMD is going the same way?

Why I do not read anything about that in Linux Journal?

I am deeply concerned about the way everything is going.
Where is the independent press now?

As a Linux pioneer since 1990, I am deeply concerned.

—Patrick Op de Beeck

Webserver in x64 Assembly Using ONLY Syscalls

As a programmer who often writes code in Assembly, I've been told "if you
like Assembly so much, why don't you write a web server in it?"
So, that's exactly what I did. I wrote a fully open-source web server in
Assembly and want to share it with everyone.
You can find the program here.
It runs on any Linux, has no dependencies except for the kernel and is
portable. It runs without privileges and serves files in the current folder.
It also works on Windows with Windows Subsystem for Linux.
Disclaimer: the software is new and experimental and should not be used in
production.

—Ioan Moldovan

The Eee PC

Regarding Jeff Siegel's article "The Asus
Eee: How Close Did the World Come to a Linux Desktop?": the Eee PC certainly was a phenomenon!

But, I have to quibble: when I bought my 901, right when they first
came on the market, they were not $199! They were going for $599
at least on Amazon and NewEgg. I bought a white one from NewEgg, and that
is what I paid.

The pre-installed Xandros was so bad that after a while I started
trying other distros, and I finally settled on Fedora at version 10
and later. There was a community doing Fedora kernel builds that
tailored it to better fit the 901, and I stayed with Fedora until
Fedora 15 when they started shipping the horrid mess called GNOME 3.
Fedora was somewhat of a tight fit, but I was able to cram most of
it into the 4gig drive, and the remainder, along with userspace, went
onto the 16-gig second drive along with room for /home.

Thanks for taking me back!

—Fred Smith

Correction

Here's a minor correction to Joey Bernard's article in the October LJ issue on
the Genius
Calculator for Linux.

The author states that the command sin(45) calculates the sin of 45 degrees,
and he shows the resulting value as 0.8509. In fact, 0.8509 is the sin of 45
radians.

There are several other places where he talks about using degrees. I
suspect Genius is actually making the calculations using radians.

Thanks for the informative article.

—Michael Andrews

Good Read

i just saw Doc Searls' music biz article ("An Immodest Proposal for
the Music Industry" in the November 2018 issue). please let me say i love the thinking;
it all makes too much sense, in a perfect world.

sorry to say the biz was formed in the "morris levy world of the jukebox"
and much less was paid to the artist back then.
which isn't saying much!
but the concept that the artist is to be cheated first is hardly new.
there is a level of greed our species hasn't been able to overcome once the corporations got this
crooked scheme in their sights. couple this with the digitizing of music (all aspects including
production and distribution)—AN UNDERWRITERS DREAM.
all the greedy tech guys with another greedy corporate structure have raised $$ on the back of a
nickel-and-dime/mom-and-pop biz, and see how easy it is to monopolize this industry.
i'd have added this to the comment chain, but i refuse to log in if i don't need to.
thanks for your writings.

—matthew king kaufman

Doc Searls replies: Thanks, Matthew.
My thinking in that piece isn't meant for a perfect world, or for fixing the music industry as it
stands. It's for re-creating how we deal with music, much as free software and open source re-created
how we deal with code.

Thanks also for bringing up Morris Levy. Reading
about his life
reminds me of the time (I'm guessing 1972) I ran into some
mafia folks in the basement of a New Jersey recording studio that had lots of Four Seasons gold records
on the walls. I was working for a radio station in the area at the time, and I was a guest in the studio
of a guy in the juke-box business. (One reason I hardly ever watched The Sopranos was that the show
was way too close to home for me, a Jersey kid.)

For more on the history of music and copyright, check out this slide deck,
based on research by a law student
who interned for me the summer of 2009. It ends with an idea that overlaps well with EmanciPay.

From Social Media

OpenSourceInitiative account@OpenSourceOrg:

"If companies that are highly dependent on #OSS don't start providing serious financial support,
directly to #opensource projects and associated companies, those resources will dwindle and may
disappear." - Glyn Moody (@glynmoody), via @linuxjournal
https://www.https://www.linuxjournal.com/content/time-net-giants-pay-fairly-open-source-which-they-depend

Trumpy @trump_onlinux
Replying to @OpenSourceOrg @linuxjournal @glynmoody:

Which is why open-source isn't always the best route. Also under the gpl can you not sell support or
even the software as long as the source is available?

Khandoker Mazidul Haque:

Well, they bought Red Hat.

S Clarke Ohlendorf @scohlendorf
Replying to @utos @linuxjournal @glynmoody:

Interesting argument. I think it would be amazingly beneficial to the #OpenSource and tech communities
at large if companies chose to do something like @citusdata is—donating 1% of their equity toward
open-source projects (see link).

Utah Open Source @utos:

#CitusData is donating 1% equity to #PostgreSQL organizations | @citusdata
This may be the first time a company has #donated 1% of its #equity to support the mission of an
#OpenSource foundation. Learn more: http://ow.ly/l3iK50jvdcQ.
@postgresql @pgus @PledgeOne #Postgres

Regarding "The Asus
Eee: How Close Did the World Come to a Linux Desktop?"

Tim Hoppen:

I have had the 1008HA for a decade. I recently pulled it out of a storage bin with a
battery so swollen that it popped the keyboard off.

It was fun while it lasted.

Jim Sanders:

I still have mine, been through multiple batteries, but still works great (running mint).

Clay Cott:

I had the 7 and the 10 and they both slayed as a travel laptop in every way except screen
size obv.

Send LJ a Letter

We'd love to hear your feedback on the magazine and specific articles.
Please write us here or
send email to ljeditor@linuxjournal.com.

Photos

Send your Linux-related photos to ljeditor@linuxjournal.com, and we'll
publish the best ones here.

Auto-Download Linux Journal Each Month

There's an old saying, "anything worth doing, is worth
automating"—or
something like that.
Downloading and reading Linux Journal always has been worth doing,
and now you can automate it with our new autolj script,
which you can get here.

Follow these few simple steps, and you can be downloading the PDF (or the
.epub or the .mobi file)
with the greatest of ease each month:

1) First download the script and save it somewhere; ~/bin is a good choice.
You can name it whatever you like; it doesn't need to be called autolj.sh.

2) Open a terminal/shell and execute the following commands:

$ chmod +x ~/bin/autolj.sh
$ ~/bin/autolj.sh --init
Enter the email and zip/postal code associated
with your Linux Journal subscription
EMail: you@example.com # Enter your email address
Zip : 88888 # Enter your zip/postal code
Creating initial config file.
Change your preferences in '/home/YOU/.config/autolj.cfg'.
Sample crontab configuration is in '/home/YOU/.config/autolj.crontab'.

If you want to run the script from cron automatically each
month, you can do this:

$ cp /home/YOU/.config/autolj.crontab mycrontab
$ crontab -l >>mycrontab
$ crontab <mycrontab
$ rm mycrontab

When you first run the script, use the --init command-line
option to initialize the configuration file for the script.
It will prompt for the email and zip/postal code associated with
your Linux Journal subscription.

It saves that information in a file named ~/.config/autolj.cfg (if you saved the
script with a different name, the base name of the config file will match
the name that you saved the script under).

You can edit the configuration file with any text editor that you have
on hand, or you can rerun the script with the --init
option to re-create
the config file (any existing changes that you've made will be lost).

The config file is a bash script that is sourced by the autolj script,
so maintain valid bash syntax in the file.
The config file contains a few other options that you may also want to change
(the default value for each is shown):

	
doctypes — specifies the document types (PDF, EPUB,
MOBI) to download (doctypes="pdf").

	
save_dir — specifies the directory where downloads
are stored (save_dir='$HOME/linuxjournal/issues').

	
save_file — specifies the name used for downloaded
files (save_file='LJ-$(printf %03d ${inum})-$year-$(printf %02d
${month}).${doc}').

	
notify_msg — specifies the message to use when
notifying of a new download (notify_msg='The $(date +%B --date
${month}/1) ${year} Linux Journal ${doc^^}\\nhas been
downloaded.').

	
do_notify — specifies if the script should attempt
to notify you of new downloads (do_notify=1).

You may have noticed that the save_dir,
save_file and notify_msg variables
are in single quotes (meaning that the variables they reference won't get
evaluated when the config file is sourced by the script).
Rather, the script evaluates them when it needs them.
When the strings are eval'd, the following variables will be set:

	
inum — issue number.

	
month — issue month as a number.

	
year — issue year.

	
doc — document type (pdf, epub or mobi).

By evaluating the strings when needed, you can customize where
things are downloaded and how they are named.

Here are a few examples of what you can do:

Download all types:
doctypes="epub mobi pdf"

Organize downloads by document type:
$HOME/linuxjournal/epub - epubs go here
$HOME/linuxjournal/mobi - mobis go here
$HOME/linuxjournal/pdf - pdfs go here
save_dir='$HOME/linuxjournal/${doc}'

Organize downloads by month-year:
$HOME/linuxjournal/1-2018 - January
$HOME/linuxjournal/10-2018 - October
save_dir='$HOME/linuxjournal/${month}-${year}'

Organize downloads by year-month (make sure month is 2 digits):
$HOME/linuxjournal/2018-01 - January
$HOME/linuxjournal/2018-10 - October
save_dir='$HOME/linuxjournal/${year}-$(printf %02d ${month})'

Use the month name in the downloaded file:
Linux-Journal-January-2018.pdf
Linux-Journal-October-2018.pdf
save_file='Linux-Journal-$(date +%B ${month}/1)-$year.${doc}'

Change the notification message.
notify_msg='The new LJ is here! The new LJ is here!
 ↪${month}-${year}-${doc}.'

Disable notifications.
do_notify=0

If you run the script from cron and your system can deliver email to an
account that you monitor, you'll get a notification when the script
manages to download any new issue files.

If you have the program notify-send installed on your system,
the script also will "attempt" to send a notification to your desktop
when it downloads any files (notifications being the pop-ups that appear
at the bottom right of your screen).

I use the word "attempt", because if you're running the script from
cron, notify-send may not work.
If you want to disable the use of notify-send, set
do_notify to zero
in the config file.

If you don't keep your system running all the time, you also can set up
the script to auto-run whenever you log in.

A few more notes before we wrap it up:

	
You can only use the script to download the latest issue,
so make sure you run it before the next issue comes out.

	
The XDG_CONFIG_HOME variable is honored: if you have it
set, the config file, the sample crontab and the image
file will be stored there rather than in ~/.config.

	
Double-check our generated crontab file to make sure
it isn't doing anything you don't want.

	
The generated crontab entry runs at a randomly generated
time between midnight and 5:59am,
and it runs only on the first seven days of the month.

	
If you look at the script, you'll see a great big scary
blob of base64-encoded data. Don't be afraid; it's just
a png image that's saved in ~/.config/autolj.png, and it's
used by notify-send to put an image in the notification
message.

	
If you change the save_dir and save_file
values in the config file, you can use the --no-download
option to run the script, skip the actual downloading and generate
some debug output to see if the directories and filenames
are coming out as you expected.

[image: Notification Image]

Figure 1. Notification Image

And that's it! Download Linux Journal now and automate your life a little bit.

Send email to ljauto@linuxjournal.com to report bugs or if you need help with the
script.

—Mitch Frazier

FOSS Project Spotlight: Appaserver

An introduction to an application server that allows you to build MySQL user interfaces
without
programming.

Assume you are tasked to write a browser-based, MySQL user interface for the table called CITY.
CITY has two columns. The column names are city_name and state_code—each combined are the
primary key.

Your user interface must enable users to execute the four main SQL operations: select, insert,
update and delete. The main characteristics for each operation are:

	
The select operation needs an HTML prompt form to request a query. It also needs a where
clause generator to select from CITY. After forking MySQL and retrieving the raw rows, it needs to
translate them into an HTML table form.

	
The HTML table form needs to be editable, and user edits need to be translated into update
statements.

	
Each resulting row following the execution of a query is a candidate for deletion.

	
The insert operation needs a blank form. It also needs to translate Apache's common gateway
interface (CGI) into insert statements.

So, you might create the source file called city.c and type in all the required code. Of course,
relational databases have relations. One city has many persons residing in it. Assume the PERSON
table has the column names of full_name, street_address,
city_name and state_code. full_name and
street_address combined are the primary key (Figure 1).

[image: Insert Caption Des]

Figure 1. Database Schema of Many Persons Residing in One City

Are you going to create the source file called person.c too? What about customer.c, inventory.c,
order.c, ...?

Alternatively, you might create the source files called select.c, insert.c, update.c and
delete.c. Then each of these modules would need as input:

	
A single table name.

	
The table's additional attributes.

	
The table's column names and additional attributes.

	
A recursive list of related tables.

	
Apache's CGI dictionary output.

The principle behind Appaserver is this multi-module approach. Appaserver stores table names in a
table. Each table's column names and relations are also stored in tables. Taking the table-driven
concept to the nth degree forms a database of a database. You can glean a detailed understanding
of how the Appaserver database is modeled from https://appahost.com/appaserver_database_schema.pdf.

Create Appaserver Applications

To create Appaserver applications, you first need Appaserver. Because Appaserver communicates with
both Apache and MySQL, installation has multiple steps. The installation steps are available at
https://github.com/timhriley/appaserver/blob/master/INSTALL. You will install a database called "template"
from which all your applications are spawned. Alternatively, you can create an Appaserver
application securely at Cloudacus.

Appaserver Roles

After you create your first application from the template database, you are ready to build it.
After you log in, you are presented with three preinstalled roles (Figure 2).

[image: Appaserver]

Figure 2. Appaserver Supports Multiple Roles

Appaserver's security centers around roles. You grant permissions to roles, and you assign users
to roles. The "System" role is used to build your database. Users interact with the database in
all the other roles.

The highest user role is "Supervisor". The "Supervisor" role has permission to select, insert,
update and delete every column in every row in every application table. Two important
considerations are:

	
The "Supervisor" role cannot access any of the system tables, only application tables. (Well,
except the APPLICATION_CONSTANTS table.)

	
The "Supervisor" role has permission to delete too much.

The lowest subordinate role is "Public". The "Public" role has select permission only. It is used
in publicly funded research applications. Cloudacus hosts a research application called "Benthic".
"Public" also may be used in commercial applications to display
inventories.

The next lowest subordinate role is "Dataentry". The "Dataentry" role receives insert and lookup
permissions but not update nor delete. If someone in the "Dataentry" role comes across a mistake,
a supervisor needs to be interrupted to make the fix.

You may create many subordinate roles above these two. Assign yourself to all of them.
Then you can easily test the security.

Build Your Database

Users will interact with your database using Appaserver. Likewise, you will build your database
using Appaserver. You will first use Appaserver's insert operations. If you make a mistake,
you will use Appaserver's update and delete operations. After your user interface vision is
complete, execute the "Create Application" process. You then can change to a user role and start
producing.

How Appaserver Works

Take a look at Figure 3. The cycle begins by first choosing a table to insert into or lookup from.
Appaserver generates and sends a "select" SQL statement to MySQL, requesting the column names of
your table. MySQL returns data containing the table's column names and other metadata to
Appaserver.

Appaserver then generates HTML tags and sends them to your browser. The HTML tags will be blank
widgets if you are inserting and query widgets if you are selecting.

Your browser displays a dialog-box (form) that contains a CGI "Submit"
button. After you submit your form, the browser sends its contents to Appaserver. Appaserver
generates and sends the next appropriate SQL statement to MySQL. The cycle then repeats.

[image: Appaserver Data Flow]

Figure 3. Appaserver Data Flow Diagram

Conclusion

The Hello World Tutorial will step you through the entire database build.

Appaserver is a MySQL user interface. The interface is consistent throughout your
application—both at the system level and the user level. Once you discover Appaserver's look and feel, new
tables and columns can become new features simply by filling out a few forms.

About the Author

Tim Riley started programming on a TRS-80 model I in 1982. He holds a computer science degree from
Florida International University and an accounting degree from California State University
Sacramento. For the past 20 years he has been programming research databases for the Everglades
National Park. He can be reached via appahost.com/contact.

Patreon and Linux Journal

 [image: Patreon Logo]

Together with the help of Linux Journal supporters and subscribers,
we can offer trusted reporting for
the world of open-source today, tomorrow and in the future. To our
subscribers, old and new,
we sincerely thank you for your continued support. In addition to magazine
subscriptions, we are now receiving
support from readers via Patreon on our website.
LJ community members
who pledge $20 per month or more will be featured each month in the
magazine. A
very special thank you this month goes to:

	
Appahost.com

	Black Baron

	Chris Short

	Christel Dahlskjaer

	
David Breakey

	
Dr. Stuart Makowski

	James Mayes

	James Weatherell

	
Josh Simmons

	Magnus Magicman

	Mostly_Linux

	NDCHost.com

	
Robert J. Hansen

 [image: 12585f2]

Using Linux for Logic

I've covered tons of different scientific
applications you can run on your computer to do rather complex
calculations, but so far, I've not really given much thought to
the hardware on which this software runs. So in this article, I take a look at
a software package that lets you dive deep down to the level of the
logic gates used to build up computational units.

At a certain point,
you may find yourself asking your hardware to do too much work. In those cases,
you need to understand what your hardware is and how it works. So,
let's start by looking at the lowest level: the lowly
logic gate. To that end, let's use a software package named Logisim
in order to play with logic gates in various groupings.

Logisim should be available in most distributions' package management
systems. For example, in Debian-based distros, install it
with the following command:

sudo apt-get install logisim

You then can start it from your desktop environment's menu,
or you can open a terminal, type logisim and press
Enter. You should see a main section of the application
where you can start to design your logic circuit. On the left-hand side,
there's a selection pane with all of the units you can use for your
design, including basic elements like wires and logic gates, and
more complex units like memory or arithmetic units.

[image: Logisim]

Figure 1. When you first start Logisim, you get a blank project where
you can start to design your first logic circuit.

To learn how to start using Logisim, let's look at how to set up one of
the most basic logic circuits: an AND gate.

[image: Circuit Model]

Figure 2. You easily can add logic gates to your circuit to model
computations.

If you click the
Gates entry on the left-hand side, you'll see a full list of available
logic gates. Clicking the AND gate allows you to add them to the design
pane by clicking on the location where you want them added. At the bottom
of the left-hand side, you'll see a pane that displays the attributes
of the selected gate. You can use this pane to edit those attributes to
make the gate behave exactly the way you want. For this example,
let's change the number of inputs value from 5 to 2. The next
step is to add an output pin in order to see when the output is either
1 or 0. You can find pins in the wiring section.

On the front side of the
AND gate, you'll want to add pins so you can control input. In the
attributes for each of the pins, you'll see that you can change whether
the pin is supposed to be an output pin. You also can set whether
the pin is supposed to be a three-state pin.

The last step is to
connect all of these pieces by simply clicking and dragging
between the separate components.

[image: Logic Circuit]

Figure 3. You can add extra items, like inputs and outputs, to your
logic circuit.

By default, the input pins
currently are set to 0, so once the wires are connected, you should see
that the output is set to 0. In order to toggle the input pins, you first need
to select the toggle tool from the toolbar at the top of the window
(the one shaped like a pointing hand). Once you have selected this tool,
you can click on the input pins to change their states. Once both inputs
are set to 1, you should see the output flip to 1 also.

While you can build your circuits up from first principles and see how
they behave, Logisim also lets you define the behavior first and generate
a circuit that gives you the defined behavior. Clicking the
Window→Combinational Analysis menu item pops up a new window where you can
do exactly that.

[image: Generate a ciruit]

Figure 4. You can build up your logic circuits in reverse by defining
the behavior you wanted first, then allowing it to generate a circuit that
gives you this required behavior.

The first step is to provide a list of
inputs. You simply add a series of labels, one for each input. For this
example, you'll define an x, y and z. Next, you'll need to click
the outputs tab and do the same for the number of outputs you want to
model. Let's just define a single output for this example.

The last step
is actually to define the behavior linking the inputs to the outputs. This
is done through a logic table. So here, you'll have the output
as 0, unless either x and z or y and z are high.

[image: Logisim Circuits]

Figure 5. Logisim includes a tool that allows you to generate logic circuits
based on a truth table that you define to handle the computation you're
interested in modeling.

Once
you're happy with the definition, click the Build Circuit
button at the bottom of the window. This pops up a new dialog window
where you can define the name and select the destination project, as
well as choosing whether to use only NAND gates or only 2-input
gates.

[image: Combinational Analysis window]

Figure 6. By using the Combinational Analysis window, you can create
more complex circuits based purely on their expected behavior.

You can click on the inputs to toggle them and
verify that everything behaves as you had planned.
The Combinational Analysis window has two other tabs: Expression and Minimized. The
Expression tab shows you the logical mathematical expression that
describes the truth table you defined. You can edit your
circuit further by editing this equation directly. The minimized tab gives you
the logical equation as either the sum of products or the product of sums.

Once you finish your circuit, you can save it in a .circ
file. These files define a complete circuit that can be reused as a single
unit. When you do want to reuse them in a larger, more complex circuit,
click Project→Load Library→Logisim Library and
select the saved file. This allows you to build up very
complicated computing circuits rather quickly.

You also can export the circuit itself
by clicking File→Export Image. This allows you
to save the circuit as an image that you can use in a report or
some other process.

This is just a brief introduction, but I hope Logisim helps you learn a bit more
about the fundamentals of computing and logical structures.

—Joey Bernard

Lessons in Vendor Lock-in: Messaging

Is messaging really so complicated that you need five different messaging apps on
your phone? Discover the reasons behind messaging vendor lock-in.

One of the saddest stories of vendor lock-in is the story of
messaging. What makes this story sad is that the tech industry has
continued to repeat the same mistakes and build the same proprietary
systems over the last two decades, and we as end users continue to use
them. In this article, I look at some of the history of those
mistakes, the lessons we should have learned and didn't, and the modern
messaging world we find ourselves in now. Along the way, I offer some
explanations for why we're in this mess.

The First Wave

My first exposure to instant messaging was in the late 1990s. This was the
era of the first dotcom boom, and it seemed like every internet company
wanted to be a portal—the home page for your browser and the lens
through which you experienced the web and the rest of the internet. Each
of these portals created instant messengers of their own as offshoots of
group chat rooms, such as AOL Instant Messenger (AIM), Yahoo Chat and
MSN chat among others. The goal of each of them was simple: because you
had to register an account with the provider to chat with your friends,
once a service had a critical mass of your friends, you were sure to
follow along so you wouldn't be left out.

My friends ended up using ICQ, so I did too. Unlike some of the others,
ICQ didn't have a corresponding portal or internet service. It
focused only on instant messaging. This service had its heyday, and for a while, it
was the main instant messenger people used unless they were already tied in
to another IM service from their internet portal.

The nice thing about ICQ, unlike some of the other services at the time,
was that it didn't go to great effort to obscure its API and block
unauthorized clients. This meant that quite a few Linux ICQ clients
showed up that worked pretty well. Linux clients emerged for the other
platforms too, but it seemed like once or twice a year, you could count
on an outage for a week or more because the upstream messaging network
decided to change the API to try to block unauthorized clients.

Proprietary APIs

Why did the networks want to block unauthorized clients? Simple: instant-messaging
networks always have been about trends. One day, you're the
popular IM network, and then the next day, someone else comes along. Since the
IM network tightly controlled the client, it meant that as a user, you
had to make sure all of your friends had accounts on that network. If a
new network cropped up that wanted to compete, the first thing it had
to do was make it easy for users to switch over. This meant offering
compatibility with an existing IM network, so you could pull over your
existing buddy list and chat with your friends, knowing that eventually
some of them might move over to this new network.

The late 1990s and early 2000s were all about the cat-and-mouse game
between these major providers. Linux users like myself ended up
feeling the pain from this battle on the sidelines, because we often
used multi-protocol chat clients like Pidgin and Bitlbee that use the
libpurple library to allow you to talk to multiple chat networks from
a single interface. Having a universal messaging application like this
was convenient, but it also meant that from time to time, some of your
friends would go offline for a week or two while the big tech vendors
changed their protocol to lock each other out. At some point, a clever
developer would figure out a workaround that made its way into
libpurple, and you would be back in business.

Eventually, one of those platforms would lose too many users, and that
IM network would go offline. Today, scrolling through the list of
supported libpurple networks reads like a proprietary instant-messaging
graveyard. Of course, through all of this, a universal messaging protocol
appeared on the scene, and for a moment, it seemed like these bad-old-days
of proprietary networks was over.

What's This Jibber Jabber?

The instant-messaging world was a mess of incompatible proprietary
networks, and then one day, a chat client appeared that promised to fix
everything for good: Jabber. Unlike other IM networks, Jabber's
advantage was that it was free software and used an open IM protocol
called XMPP. In addition to the fact that XMPP was an open protocol, it
had another advantage. It was decentralized. With XMPP, you no longer had
to worry about moving all your friends to a proprietary chat network
that eventually would shut down. People with a few sysadmin skills could
set up their own XMPP networks that could talk with all of the other existing XMPP
networks.

Messaging isn't rocket science. After all the engineering effort, it's
not like these proprietary IM networks were doing much innovating. In
the end, they were all just re-inventing the same IM wheel—sending text,
images and files with a new interface. With Jabber and XMPP, there
was a universal, cross-platform and free IM network. With all of the
basics solved once and for all, instead of re-inventing the wheel again,
developers could focus on adding new and useful chat features with XMPP
plugins. For instance, the OTR (Off the Record) plugin added strong
encryption, authentication, deniability and perfect forward secrecy to
XMPP messages.

For a while, it looked like XMPP was going to take off and become the
new default cross-platform standard for IM, and we no longer would have to
worry about proprietary companies coming in to re-invent the wheel just to
lock users in to their platforms. Indeed, even Google used XMPP when it first
created GChat, which meant that it was just another XMPP network—you
could use any Jabber client to communicate with GChat users. Sadly, this
era of open messaging standards wasn't meant to last, and it was the
cell phone that arguably started a brand-new era of proprietary IM lock-in.

Just the Text, Ma'am

The advent of cell phones in everyone's pockets spawned a new era
and platform for messaging. Instead of worrying about adding buddies to
your buddy list, all you needed was to know someone's cell-phone number, and
you could send them a message over SMS. At first, due to the limitations
of typing on a number pad, SMSes were short with truncated syntax, but
over time, phones started including either physical or virtual keyboards,
and SMS quickly became the preferred way to send an instant message to
someone else. Later on, the protocol was expanded, and MMS allowed you to
send images as well as text.

There was only one real problem with SMS as a universal messaging platform,
and that problem led to the new era of proprietary IM networks—cell-phone
providers charged for SMSes. Each provider offered different plans and
rates, with some charging per SMS, and others treating SMS like they did
phone minutes, with different tiers included with a plan and overage fees
if you went past your limit.

Once smartphones with data plans started to become the norm, those
metered SMS plans provided an opening that proprietary vendors were waiting
for to move the huge market of SMS users over to their platforms. How? By
offering instant-messaging applications on the phone that took over your
default SMS application. Then, if you and your friend both happened to
use the same IM program, the messages would be sent over the vendor's
network instead of SMS, thereby saving you the SMS fees. Of course,
then you would be motivated to convince all of your friends to use the
same IM app, and we would be back to where we were with desktop clients.

On Android, this launched the battle of SMS apps. In the browser wars,
everyone wanted to be the default desktop browser, and during the SMS
wars, everyone was including an SMS app in their suite of phone apps with the
intention
of being the default SMS app upon installation. As
with desktop IM clients, the goal was the same: by convincing you
to use their app and network, you'd also bring your
friends along. Once you and your friends were all using the same app,
you were locked in, since unlike switching away from SMS, switching to
another app meant either bringing all of your friends along with you
or falling back to metered SMS. Even Google abandoned GChat and launched
one chat network after another, none of which seemed to take off.

Unlike with Android, the SMS war on iOS ended before it started. Because
Apple controlled the OS and applications that showed up on the iPhone,
it could make sure its own iMessage application handled SMS
by default. This had the added benefit for Apple of further locking you
in to the hardware platform and not just the application, since iMessage
worked only on Apple's OSes. If all of your friends had iPhones, they got
"free" SMS. Switching to Android meant you'd have to fall back to
metered SMS.

The Current State of Instant Messaging

All of this leads to the current state of instant messaging:
a mess. You have five different applications on your phone that you
switch between depending on to whom you want to talk. When you do want
to talk to someone, you have to remember whether you use SMS, Signal,
WhatsApp, iMessage, FB messenger, Twitter DMs, Hangouts or any number
of other messaging applications to communicate with that person.

Messaging isn't complicated. We solved this more than a decade ago. It's
sending text, emojis and photos, perhaps to a group, ideally with
end-to-end encryption. You have five incompatible messaging apps on your
phone not from technical limitations, but because greed drives companies
to ignore compatibility and optimize for vendor lock-in. Imagine having
five different web browsers you had to switch between depending on which
website you wanted to visit. If those same companies had their way,
you would (and that's largely what phone apps have become).

So what's the solution? The solution is for people to realize the problem
with this vendor lock-in and for the FOSS community to continue to
push for and use open standards for messaging. Good-old XMPP is still
around, and it works, and there's also Matrix if you want to try a newer
open communication platform. Both offer clients for any platform you'd
want, and you can find them on multi-platform chat clients as well.

—Kyle Rankin

Reality 2.0: a Linux Journal Podcast

Join us each week as Doc Searls and Katherine Druckman navigate the realities
of the new digital world: https://www.linuxjournal.com/podcast.

[image: Podcast]

News Briefs

	
Greg Kroah-Hartman released
Linux kernel 4.19 and handed the kernel tree back to
Linus, writing "You can have the joy of dealing with the merge window."

	
Firefox
63.0 was released. With this new version, "users can
opt to block third-party tracking cookies or block all trackers and create
exceptions for trusted sites that don't work correctly with content
blocking enabled". In addition, WebExtensions now run in their own process
on Linux, and Firefox also now warns if you have multiple windows and tabs
open when you quit via the main menu. You can download it from here.

	
Richard Stallman
announced the "GNU Kind Communication
Guidelines". Stallman writes that in contrast to a code of conduct with
punishment for people who violate the rules, "the
idea of the GNU Kind Communication Guidelines is to start guiding
people towards kinder communication at a point well before one would
even think of saying, 'You are breaking the rules'." The
initial version of the GNU Kind Communications Guidelines is here.

	
Linus Torvalds discusses his return to Linux in an interview with ZDNet, and says he's "starting the usual
merge window activity now".
Regarding the Code of Conduct, he says: "I want to leave
it alone, and wait until we actually have any real issues. I'm hoping there
won't be any, but even if there are, I want the input to be colored more by
real and *actual* concerns, rather than just people arguing about it."
See the article for more details on what he's been doing and other
news from the Maintainers Summit.

	
The Tor Project has announced that Mozilla will match all donations to the
project through the end of the year. ZDNet
reports that Mozilla matched $200,000 in donations to Tor last year.
This year, Tor plans to use the funds to "increase the capacity
modularization and scalability of the Tor network"; "better test for,
measure, and design solutions around internet censorship"; and "strengthen
development of the Tor Browser for Android".

	
A painting created by an open-source neural network sold recently for $432K
at a London auction house. Obvious is the group behind the
work that "used 19-year-old Robbie Barrat's GAN package, available here on
Github, and sourced paintings from Wiki Commons" to create the painting. See
the post
on TNW for details on the "first portrait ever sold at auction that was
made with the assistance of an AI".

	A team of European researchers has created MixedEmotions, an open-source toolkit
that can automatically assess emotions in text, audio and video. According to PhysOrg,
"There
is a growing demand for automatic analysis of emotions in different fields. The
possible applications are wide, including call centers, smart environments,
brand reputation analysis and assistive technology."
Read more here
about emotion detection and the complexities involved in adapting these tools
to other languages.

	
IBM announced its acquisition of Red Hat for $34 billion. Interesting note: Bob
Young, founder of Red Hat, was Linux Journal's first editor in chief.

	
Braiins Systems has announced Braiins
OS, which claims to be "the first
fully open source system for cryptocurrency embedded devices". FOSSBYTES
reports that the initial release is based on OpenWrt. In addition,
Braiins OS "keeps monitoring the working conditions and hardware to create
reports of errors and performance. Braiins also claimed to reduce power
consumption by 20%".

	
Ubuntu 19.04 will be called Disco Dingo, and the release is scheduled for
April 2019. Source: OMG!
 Ubuntu!.

	System76 announces it will donate a portion of its profits
from laptop sales to open-source
projects until January 3, 2019. Projects include KiCad, Electronic Frontier Foundation (EFF),
Free
Software Foundation (FSF) and the Open Source Hardware Association (OSHWA). In addition, System76
is holding a laptop sale—you can save $30–$100 on a laptop or $160–$370 with
upgraded components.

Hack and /: Travel Laptop Tips in Practice

It's one thing to give travel advice; it's another to follow it. By
Kyle Rankin

In past articles, I've written about how to prepare for a vacation or other
travel when you're on call. And, I just got back from a vacation where I
put some of those ideas into practice, so I thought I'd write a follow-up
and give some specifics on what I recommended, what I actually did
and how it all worked.

Planning for the Vacation

The first thing to point out is that this was one of the first vacations
in a long time where I was not on call, directly or indirectly. In my
long career as a sysadmin responsible for production infrastructure, I've
almost always been on call (usually indirectly) when on vacation. Even if
someone else was officially taking over on-call duties while I was away,
there always was the risk that a problem would crop up where they would
need to escalate up to me. Often on my vacations something did blow
up to the point that I needed to get involved. I've now transitioned
into more of a management position, so the kinds of emergencies I face
are much different.

I bring up the fact that I wasn't on an on-call rotation not
because it factored into how I prepared for the trip, but because,
generally speaking, it didn't factor in except that I didn't have to go
to as extreme lengths to make sure everyone knew how to contact me in
an emergency. Even though I wasn't on call, there still was a chance,
however remote, that some emergency could pop up where I needed to
help. And, an emergency might require that I access company resources, which
meant I needed to have company credentials with me at a minimum. I
imagine for most people in senior-enough positions that this
would also be true. I could have handled this in a few ways:

	
Hope that I could access all the work resources I might need from my
phone.

	
Carry a copy of my password manager database with me.

	
Put a few select work VMs on my travel laptop.

I chose option number 3, just to be safe. Although I'm not superstitious,
I still figured that if I were prepared for an emergency, there was a
better chance one wouldn't show up (and I was right). At the very least,
if I were well prepared for a work emergency, if even a minor problem
arose, I could respond to it without a major inconvenience instead
of scrambling to build some kind of MacGyver-style work environment
out of duct tape and hotel computers.

Selecting the Travel Computer

As I've mentioned in previous articles, I recommend buying a cheap,
used computer for travel. That way, if you lose it or it gets damaged,
confiscated or stolen, you're not out much money. I personally bought a
used Acer Parrot C710 for use as a travel computer, because it's small,
cheap and runs QubesOS pretty well once you give it enough RAM.

I originally planned on taking this same small travel computer with
me on my vacation. I even prepped the OS and was about to transfer
files over when I changed my mind at the last minute. I changed my mind
because at my job we are working on integrating a tamper-evident BIOS called
Heads into our laptops that, in combination with our USB security token
called the Librem Key, makes it easy to detect tampering. You plug in the
key at boot, and if it blinks green, you are fine; if it blinks red, it
detected tampering. Normally, I wouldn't recommend taking a work laptop on
vacation, but in this case, I wanted to beta-test this BIOS protection, so at
the last minute, I decided to take my work laptop and try everything out.

Preparing the Travel Computer

Another important part of travel preparation is to make backups of your
personal or work laptops. This is important whether you are traveling
with your personal laptop, a work laptop or a travel laptop, because in
any of those cases, you will want to transfer some files to the laptop you
have with you, and you'll also want to be safe in case you lose that machine.

In my case, the backup process has an additional significance because
I use QubesOS. QubesOS allows you to separate different workflows,
files and applications into individual VMs that all run in a unified
desktop. You also can back up and restore those VMs independently. For
travel, this means I can perform a full backup of personal and work
machines before the trip and then restore just the VMs I need onto my
travel laptop. If the laptop is lost, broken or stolen, or if I want to wipe
the laptop, I don't have to worry about losing data.

Since I was traveling with my work laptop, this meant that I performed my
normal backups of personal and work Qubes VMs, but then I just restored
the personal VMs I thought I might need on the trip onto my work
laptop. Otherwise, I would have restored both personal and work VMs onto
my separate travel laptop. Normally I also recommend that you spend a
full day working from your travel laptop after you have set it up,
so you can make sure you have all of the access and files you need. Since
I was traveling with the work laptop, I could skip this step, of course.

The Results

So what were the results of all this travel preparation? I barely had to
open my laptop at all! I had one or two personal obligations that required
the laptop at the beginning, but I didn't have to fire up any work VMs. Since
I mostly kept my laptop in a bag, I did end up leaving it unattended
quite a bit, so it was a good test for that tamper-detection (as you might
expect, the laptop wasn't tampered with during the trip). Knowing that
I could fire up work VMs if I had to did give me extra peace of mind
during the trip, even though I never actually had to try it.

When I returned home, there was some clean up to do. Normally
with my travel laptop, this means a complete wipe and re-install of the OS
so it's ready for next time. In this case, since I was using my regular
work laptop, I just deleted all of the personal VMs I had added.

Resources

	
"Sysadmin
Tips on Preparing for Vacation" by Kyle Rankin

	"Advice
for Buying and Setting Up Laptops When You're Traveling or On-Call" by
Kyle Rankin

 About the Author

 Kyle Rankin is a Tech Editor and columnist at Linux Journal and the Chief Security Officer at Purism. He is the author of Linux Hardening in Hostile Networks, DevOps Troubleshooting, The Official Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket Reference, Linux Multimedia Hacks and Ubuntu Hacks, and also a contributor to a number of other O'Reilly books. Rankin speaks frequently on security and open-source software including at BsidesLV, O'Reilly Security Conference, OSCON, SCALE, CactusCon, Linux World Expo and Penguicon. You can follow him at @kylerankin.

[image: Kyle Rankin]

At the Forge: Testing Your Code with Python's pytest, Part II

Testing functions isn't hard, but how do you test user input and output? By Reuven M.
Lerner

In my last
article, I started looking at "pytest", a framework for testing Python programs
that's really changed the way I look at testing. For the first time, I really
feel like testing is something I can and should do on a regular basis; pytest makes
things so easy and straightforward.

One of the main topics I didn't cover in my last article is user input and output. How
can you test programs that expect to get input from files or from the user? And, how
can you test programs that are supposed to display something on the screen?

So in this article, I describe how to test input and output in a variety of ways,
allowing you to test programs that interact with the outside world. I try not
only to explain what you can do, but also show how it fits into the larger context of testing
in general and pytest in particular.

User Input

Say you have a function that asks the user to enter an integer and then
returns the value of that integer, doubled. You can imagine that the function would
look like this:

def double():
 x = input("Enter an integer: ")
 return int(x) * 2

How can you test that function with pytest? If the function were to take an argument,
the answer would be easy. But in this case, the function is asking for
interactive input from the user. That's a bit harder to deal with. After all, how
can you, in your tests, pretend to ask the user for input?

In most programming languages, user input comes from a source known as
standard input (or stdin). In Python, sys.stdin is a read-only file object from
which you can grab the user's input.

So, if you want to test the "double" function from above, you can (should) replace
sys.stdin with another file. There are two problems with this, however. First, you
don't really want to start opening files on disk. And second, do you really want to
replace the value of sys.stdin in your tests? That'll affect more than just one
test.

The solution comes in two parts. First, you can use the pytest "monkey patching"
facility to assign a value to a system object temporarily for the duration of the
test. This facility requires that you define your test function with a parameter named
monkeypatch. The pytest system notices that you've defined it with that parameter,
and then not only sets the monkeypatch local variable, but also sets it up to let you
temporarily set attribute names.

In theory, then, you could define your test like this:

def test_double(monkeypatch):
 monkeypatch.setattr('sys.stdin', open('/etc/passwd'))
 print(double())

In other words, this tells pytest that you want to open /etc/passwd and feed its
contents to pytest. This has numerous problems, starting with the fact that
/etc/passwd contains multiple lines, and that each of its lines is non-numeric.
The function thus chokes and exits with an error before it even gets to the (useless)
call to print.

But there's another problem here, one that I mentioned above. You don't really want to
be opening files during testing, if you can avoid it. Thus, one of the great
tools in my testing toolbox is Python's StringIO class. The beauty of
StringIO is
its simplicity. It implements the API of a "file" object, but exists only in memory
and is effectively a string. If you can create a StringIO instance, you can pass it
to the call to monkeypatch.setattr, and thus make your tests precisely the way you
want.

Here's how to do that:

from io import StringIO
from double import double

number_inputs = StringIO('1234\n')

def test_double(monkeypatch):
 monkeypatch.setattr('sys.stdin', number_inputs)
 assert double() == 2468

You first create a StringIO object containing the input you want to simulate from the
user. Note that it must contain a newline (\n) to ensure that you'll see the end of
the user's input and not hang.

You assign that to a global variable, which means you'll be able to access it from
within your test function. You then add the assertion to your test function, saying that
the result should be 2468. And sure enough, it works.

I've used this technique to simulate much longer files, and I've been quite satisfied
by the speed and flexibility. Just remember that each line in the input "file"
should end with a newline character. I've found that creating a StringIO with a
triple-quoted string, which lets me include newlines and write in a more natural
file-like way, works well.

You can use monkeypatch to simulate calls to a variety of other objects as well. I
haven't had much occasion to do that, but you can imagine all sorts of
network-related objects that you don't actually want to use when testing. By monkey-patching those objects during testing, you can pretend to connect to a remote server,
when in fact you're just getting pre-programmed text back.

Exceptions

What happens if you call the test_double function with a string? You probably
should test that too:

str_inputs = StringIO('abcd\n')
def test_double_str(monkeypatch):
 monkeypatch.setattr('sys.stdin', str_inputs)
 assert double() == 'abcdabcd'

It looks great, right? Actually, not so much:

E ValueError: invalid literal for int() with base 10: 'abcd'

The test failed, because the function exited with an exception. And that's okay; after
all, the function should raise an exception if the user gives input that isn't
numeric. But, wouldn't it be nice to specify and test it?

The thing is, how can you test for an exception? You can't exactly use a usual assert
statement, much as you might like to. After all, you somehow need to trap the exception,
and you can't simply say:

assert double() == ValueError

That's because exceptions aren't values that are returned. They are raised through a
different mechanism.

Fortunately, pytest offers a good solution to this, albeit with slightly different
syntax than you've seen before. It uses a with statement, which many Python
developers recognize from its common use in ensuring that files are flushed and
closed when you write to them. The with statement opens a block, and if an
exception occurs during that block, then the "context manager"—that is, the object
that the with runs on—has an opportunity to handle the exception. pytest takes
advantage of this with the pytest.raises context manager, which you can use in the
following way:

def test_double_str(monkeypatch):
 with pytest.raises(ValueError):
 monkeypatch.setattr('sys.stdin', str_inputs)
 result = double()

Notice that you don't need an assert statement here, because the
pytest.raises is,
effectively, the assert statement. And, you do have to indicate the type of error
(ValueError) that you're trying to trap, meaning what you expect to receive.

If you want to capture (or assert) something having to do with the exception that was
raised, you can use the as part of the with statement. For example:

def test_double_str(monkeypatch):
 with pytest.raises(ValueError) as e:
 monkeypatch.setattr('sys.stdin', str_inputs)
 results = double()
 assert str(e.value) == "invalid literal for int()
 ↪with base 10: 'abcd'"

Now you can be sure that not only was a ValueError exception raised, but also what
message was raised.

Output

I generally advise people not to use print in their functions. After all, I'd like
to get some value back from a function; I don't really want to display something on
the screen. But at some point, you really do actually need to display things to the
user. How can you test for that?

The pytest solution is via the capsys plugin. Similar to monkeypatch, you declare
capsys as a parameter to your test function. You then run your function, allowing
it to produce its output. Then you invoke the readouterr function on
capsys,
which returns a tuple of two strings containing the output to stdout and its
error-message counterpart, stderr. You then can run assertions on those strings.

For example, let's assume this function:

def hello(name):
 print(f"Hello, {name}!")

You can test it in the following way:

def test_hello(capsys):
 hello('world')
 captured_stdout, captured_stderr = capsys.readouterr()
 assert captured_stdout == 'Hello, world!'

But wait! This test actually fails:

E AssertionError: assert 'Hello, world!\n' == 'Hello, world!'
E - Hello, world!
E ? -
E + Hello, world!

Do you see the problem? The output, as written by print, includes a trailing
newline (\n) character. But the test didn't check for that. Thus, you can check for
the trailing newline, or you can use str.strip on stdout:

def test_hello(capsys):
 hello('world')
 captured_stdout, captured_stderr = capsys.readouterr()
 assert captured_stdout.strip() == 'Hello, world!'

Summary

pytest continues to impress me as a testing framework, in no small part because it
combines a lot of small, simple ideas in ways that feel natural to me as a developer.
It has gone a long way toward increasing my use of tests, both in general
development and in my teaching. My "Weekly Python Exercise" subscription service now
includes tests, and I feel like it has improved a great deal as a result.

In my next article, I plan to take a third and final look at pytest, exploring some of the other
ways it can interact with (and help) write robust and useful programs.

Resources

	
The pytest website.

	
An excellent book on the subject is Brian Okken's Python testing with
pytest,
published by Pragmatic Programmers. He also has many other resources, about pytest
and code testing in general, at http://pythontesting.net.

	
"Testing
Your Code with Python's pytest" by Reuven M. Lerner

About the Author

Reuven Lerner teaches Python, data science and Git to companies
around the world. You can subscribe to his free, weekly "better
developers" e-mail list, and learn from his books and courses at
http://lerner.co.il. Reuven lives with his wife and children in
Modi'in, Israel.

[image: Reuven M. Lerner]

Work the Shell: More Roman Numerals and Bash

When in Rome: finishing the Roman numeral converter script. By Dave Taylor

In my last article, I started digging in to a classic computer science puzzle: converting Roman numerals to
Arabic numerals. First off, it more accurately should be called Hindu-Arabic, and it's worth
mentioning that it's believed to have been invented somewhere between the first and fourth
century—a counting system based on 0..9 values.

The script I ended up with last time offered the basics of parsing a specified Roman numeral and
converted each value into its decimal equivalent with this simple function:

mapit() {
 case $1 in
 I|i) value=1 ;;
 V|v) value=5 ;;
 X|x) value=10 ;;
 L|l) value=50 ;;
 C|c) value=100 ;;
 D|d) value=500 ;;
 M|m) value=1000 ;;
 *) echo "Error: Value $1 unknown" >&2 ; exit 2 ;;
 esac
}

Then I demonstrated a slick way to use the underutilized seq command to parse a string character by
character, but the sad news is that you won't be able to use it for the final Roman numeral to
Arabic numeral converter. Why? Because depending on the situation, the script sometimes
will need to jump two ahead, and not just go left to right linearly, one character at a time.

Instead, you can build the main loop as a while loop:

while [$index -lt $length] ; do

 our code

 index=$(($index + 1))
done

There are two basic cases to think about in terms of solving this algorithmic puzzle: the subsequent
value is greater than the current value, or it isn't—for example, IX versus II. The first is 9
(literally 1 subtracted from 10), and the second is 2. That's no surprise; you'll need to know both the
current and next values within the script.

Sharp readers already will recognize that the last character in a sequence is a special case,
because there won't be a next value available. I'm going to ignore the special case to start with,
and I'll address it later in the code development. Stay tuned, sharpies!

Because Bash shell scripts don't have elegant in-line functions, the code to get the current and
next values won't be value=mapit(romanchar), but it'll be a smidge clumsy with its use of the global
variable value:

mapit ${romanvalue:index-1:1}
currentval=$value

mapit ${romanvalue:index:1}
nextval=$value

It's key to realize that in the situation where the next value isn't greater than the current value
(for example, MC), you can't automatically conclude that the next value isn't going to be part of a
complex two-value sequence anyway. Like this: MCM. You can't just say M=1000 and C=500, so let's
just convert it to 1500 and process the second M when we get to it. MCM=1900, not 2500!

The basic logic turns out to be pretty straightforward:

if [$nextval -gt $currentval] ; then
 sum=$(($sum + $nextval - $currentval))
else
 sum=$(($sum + currentval))
fi

Done!

Or, um, not. The problem with the conditional code above is that in the situation where you've
referenced both the current and next value, you need to ensure that the next value isn't again
processed the next time through the loop.

In other words, when the sequence "CM" is converted, the M shouldn't be converted yet
again the second time through the loop.

This is precisely why I stepped away from the for loop, so you can have some passes through the loop
be a +1 iteration but others be a +2 iteration as appropriate.

With that in mind, let's add the necessary line to the conditional statement:

if [$nextval -gt $currentval] ; then
 sum=$(($sum + $nextval - $currentval))
 index=$(($index + 1))
else
 sum=$(($sum + currentval))
fi

Remember that the very bottom of the while loop still has the index value increment +1. The above
addition to the conditional statement is basically that when the situation of next > current is
encountered, the script will process both values and jump ahead an extra character.

This means that for any given Roman numeral, the number of times through the loop will be equal to or
less than the total number of characters in the sequence.

Which means the problem is now solved except for the very last value in the sequence. What happens if
it isn't part of a next-current pair? At its most simple, how do you parse "X"?

That turns out to require a bunch of code to sidestep both the conversion of nextval from the string
(which will fail as it's reaching beyond the length of the string) and any test reference to
nextval.

That suggests a simple solution: wrap the entire if-then-else code block in a conditional that tests
for the last character:

if [$index -lt $length] ; then
 if-then-else code block
else
 sum=$(($sum + $currentval))
fi

That's it. By George, I think you've got it! Here's the full while statement, so you can
see how this fits into the overall program logic:

while [$index -le $length] ; do

 mapit ${romanvalue:index-1:1}
 currentval=$value

 if [$index -lt $length] ; then
 mapit ${romanvalue:index:1}
 nextval=$value

 if [$nextval -gt $currentval] ; then
 sum=$(($sum + $nextval - $currentval))
 index=$(($index + 1))
 else
 sum=$(($sum + $currentval))
 fi
 else
 sum=$(($sum + $currentval))
 fi

 index=$(($index + 1))

done

It turns out not to be particularly complex after all. The key is to recognize that you need to parse the
Roman number in a rather clumped manner, not letter by letter.

Let's give this script a few quick tests:

$ sh roman.sh DXXV
Roman number DXXV converts to Arabic value 525
$ sh roman.sh CMXCIX
Roman number CMXCIX converts to Arabic value 999
$ sh roman.sh MCMLXXII
Roman number MCMLXXII converts to Arabic value 1972

Mission accomplished.

In my next article, I plan to look at the obverse of this coding challenge, converting Arabic numerals to
Roman numeral sequences. In other words, you enter 99, and it returns XCIX. Why not take a stab at
coding it yourself while you're waiting?

 About the Author

Dave Taylor has been hacking shell scripts on UNIX and Linux systems for a
really long time. He's the author of Learning Unix for Mac OS
X and Wicked Cool Shell Scripts. You can find him on Twitter
as @DaveTaylor, and you can reach him through his tech Q&A site: Ask Dave Taylor.

[image: Dave Taylor]

diff -u

What's New in Kernel Development By Zack Brown

Linus Returns to Kernel Development

On October 23, 2018, Linus Torvalds came out of his self-imposed isolation, pulling a lot of patches from
the git trees of various developers. It was his first appearance on the Linux Kernel Mailing
List
since September 16, 2018, when he announced he would take a break from kernel development to address his
sometimes harsh behavior toward developers. On the 23rd, he announced his return, which I cover here
after summarizing some of his pull activities.

For most of his pulls, he just replied with an email that said, "pulled". But in one of them, he noticed that
Ingo Molnar had some issues with his email, in particular that Ingo's mail client
used the iso-8859-1
character set instead of the more usual UTF-8. Linus said, "using iso-8859-1 instead of utf-8 in this
day and age is just all kinds of odd. It looks like it was all fine, but if Mutt has an option to
just send as utf-8, I encourage everybody to just use that and try to just have utf-8 everywhere. We've
had too many silly issues when people mix locales etc and some point in the chain gets it wrong."

On the 24th, Linus continued pulling from developer trees. One of these was a batch of networking
updates from David Miller, and it included contributions from a lot of different people. Linus noticed
that the Kconfig rules were running into unmet dependency warnings because the code expected to run on
the Qualcomm architecture, which Linus didn't use. He suggested it was a simple matter of updating the
dependency list in the code. He also asked why the developers didn't notice that problem when testing
their patches. Kalle Valo explained, "Mostly bad timing due to my vacation. I did do allmodconfig
build but not sure why I missed the warning, also the kbuild bot didn't report anything. Jeff did
report it last week, but I was on vacation at the time and just came back yesterday and didn't have
time to react to it yet."

That seemed fine to Linus, who said he'd pull the fix when it became available. He remarked, "I just
don't want my tree to have warnings that I see, and that may hide new warnings coming in when I do my
next pull request."

On the 25th, Linus continued pulling from developer trees. In one instance, the issue of minimal tool
versions came up. Linus prefers to support as many regular users as possible, which means supporting
tool versions from the Linux distributions.

In response to a hard-to-read patch, Andi Kleen suggested changing the minimum
supported binutils
version from 2.20 to 2.21, which would support some useful assembler opcodes that would make the patch
easier to review. Andy Lutomirski, another of the patch reviewers, said this would be fine. And Linus
said:

I always vote for "require modern tools" as long as it doesn't cause problems.

binutils-2.21 is something like seven years old by now, but the real issue would be what versions
distros are actually shipping. I don't want people to have to build their own binutils just to build a
kernel.

It's usually some ancient enterprise distro that is stuck on old versions. Anybody have any idea?

Andy replied, "CentOS 6 is binutils 2.23. CentOS 5 is EOL. RHEL 5 has 'extended life', which means
that it's officially zombified and paying customers can still download (unsupported) packages. SLES 11
is binutils 2.19, which is already unsupported. SLES 12 is 2.24. So I would guess we're okay and we
can bump the requirement to 2.21." And the conversation ended there.

Getting back to October 23rd, Linus announced his return to the mailing list and to kernel
development:

So I've obviously started pulling stuff for the merge window, and one of the things I noticed with
Greg doing it for the last few weeks was that he has this habit (or automation) to send Ack emails
when he pulls.

In fact, I reacted to them not being there when he sent himself his fake pull messages. Because he
didn't then send himself an ack for having pulled it ;(

And I actually went into this saying "I'll try to do the same".

But after having actually started doing the pulls, I notice how it doesn't work well with my
traditional workflow, and so I haven't been doing it after all.

In particular, the issue is that after each pull, I do a build test before the pull is really "final",
and while that build test is ongoing (which takes anything from a few minutes to over an hour when I'm
on the road and using my laptop), I go on and look at the *next* pull (or one of the other pending
ones).

So by the time the build test has finished, the original pull request is already long gone - archived
and done - and I have moved on.

End result: answering the pull request is somewhat inconvenient to my flow, which is why I haven't
done it.

In contrast, this email is written "after the fact", just scripting "who did I pull for and then push
out" by just looking at the git tree. Which sucks, because it means that I don't actually answer the
original email at all, and thus lose any cc's for other people or mailing lists. That would literally
be done better by simple automation.

So I've got a few options:

- just don't do it

- acking the pull request before it's validated and finalized.

- starting the reply when doing the pull, leaving the email open in a separate window, going on to
the next pull request, and then when build tests are done and I'll start the next one, finish off
the old pending email.

and obviously that first option is the easiest one. I'm not sure what Greg did, and during the later
rc's it probably doesn't matter, because there likely simply aren't any overlapping operations.

Because yes, the second option likely works fine in most cases, but my pull might not actually be
final *if* something goes bad (where bad might be just "oops, my tests showed a semantic conflict,
I'll need to fix up my merge" to "I'm going to have to look more closely at that warning" to "uhhuh,
I'm going to just undo the pull entirely because it ended up being broken").

The third option would work reliably, and not have the "oh, my pull is only tentatively done" issue.
It just adds an annoying back-and-forth switch to my workflow.

So I'm mainly pinging people I've already pulled to see how much people actually _care_. Yes, the ack
is nice, but do people care enough that I should try to make that workflow change? Traditionally, you
can see that I've pulled from just seeing the end result when it actually hits the public tree (which
is yet another step removed from the steps above - I do build tests between every pull, but I
generally tend to push out the end result in batches, usually a couple of times a day).

Comments?

Linus Walleij appreciated the description of Linus T's workflow, and said he didn't need the
acknowledgement emails. But he asked, "Can't you just tool something that mails automatically
after-the-fact? Greg's 'notices' that patch so-or-so was applied are clearly auto-generated by a
script after he applied and tested a whole bunch of them, the same should be possible for pull
requests methinks? Just something you run after a workday sealing the deal."

Linus T replied:

A certain amount of simple/stupid automation would be possible. That's how the participants list in
this email was generated, but the script I used was actually a pretty much garbage one-liner that just
happens to work for most cases.

It just did my usual "mergelog" (which is a bit like "git shortlog", it's a script to just get the
summary of my merges instead of the general git logs), and then it used the result of that lookup to
look up the email address by just matching committers.

But it's broken to the point of almost being useless for a couple of reasons:

- my mergelog names don't necessarily match any name in the git history.

For example, Greg goes by "Greg KH" when I merge from him, because I'm lazy and feel like I don't
want to mis-type his name, which I've done too many times. But in the actual git history, he goes by
the full "Greg Kroah-Hartman", so my stupid script would have messed him up.

At the other end of the spectrum, people with complex characters have their names copied-and-pasted
from their email or the signature from their tag, and sometimes those then don't match either.

- some people use one email for "official" purposes (ie company email etc) in the git history, but
actually tend to *use* another email (because sometimes the company email is slow and/or broken).

- it wouldn't get the usual mailing list cc's etc, and those might be the most important ones. It is
how I saw Greg's replies, after all.

So I feel that the automation model is just not good. The reply should go to the actual pull request,
not to the git history. People who want just _that_ could already automate the git history thing
without me even doing anything at all, either scripting it themselves or by using some filtering on
the kernel commit mailing list.

So I happened to use the automation model for this email thread, but I think it's actually the worst
of all worlds.

Willy Tarreau also replied to Linus T's original email, saying he felt that an acknowledgement email
was not necessary, and that most developers just wanted to make sure the pull request was actually
received by Linus T. But Willy suggested sending out an email if, after actually pulling from a tree,
Linus T changed his mind and reverted the change. In that situation, an email to that developer would be useful.

Linus T replied to Willy, saying this was actually his normal workflow—to send an email only in
the case where he tried to pull, but then decided to revert the change later. He said, "And that email
wouldn't go away, so if I first send a 'Pulled' ack message, and then something bad happens and I
unpull it, I would send a second email anyway saying 'oh, oops, not pulled after all'."

Ingo Molnar also replied to Linus T's original email, saying he used another option aside from the
ones Linus T proposed. He explained:

I use "zero inbox" mail reading, last-to-first, and with that I can "delay" a reply to a pull
request or patch simply by marking the mail unread. Then when I push out tested trees and patches, I
go and process the tail of the mbox, a couple of entries typically. (For patches I don't even have to
do anything because the notification is automatic, and I mark the patch read when I see the tip-bot
notification myself.)

It's still a separate workflow step but easier to manage than postponed emails or separate email
windows, which are inevitably going to get lost in browser mishaps every couple of weeks, and which
are not high-profile enough in the primary workflow either.

Might not be a practical method with the amount of mail you are getting though.

Ingo also mentioned that he didn't personally feel like he preferred to receive an acknowledgement
email. He agreed that it would be more convenient to get the emails, but he said, "it's not a big
factor;
I'd say the efficiency of your workflow (which is a single thread) should be the primary concern
here."

Boris Brezillon also replied to Linus T's initial post, saying he did prefer to get the
acknowledgement emails. He added, "I don't care if this notification is sent in-reply to the original
email or in a separate email." He also said he assumed such a thing would be automated, and he
concluded, "it's just a nice thing to have, and I can do without it if it's too complicated to
automate."

Mark Brown also replied to Linus T's initial post, saying he didn't need the acknowledgement emails.
In fact, he said, "I was a bit alarmed the first time Greg sent me an ack - your usual workflow is
that if there's any mail it means that there's a problem."

Takashi Iwai also replied to Linus T's initial post, saying he did appreciate the acknowledgement
emails—not because they indicated the patch had been accepted, but just that the pull request had
been received at all.

Greg Kroah-Hartman also replied to Linus T's initial post. While Linus was away, Greg had been the one
accepting pull requests from developers, and he had always given an acknowledgement email, which is
why Linus T was considering doing the same. Greg said to Linus T:

I had this same issue, as I had full builds run and had to wait for the results. But I had a much
smaller number of pull requests, so I just dumped them all into one folder and then did the responses
when the tests came back.

So I had the same issue as you, but you have much more requests to deal with, sorry.

Kirill A. Shutemov also replied to Linus T's initial post, joining the chorus recommending an
automated solution. He suggested including the email Message-ID field in the text of the merge's
commit message itself. Then a tool could easily extract the Message-ID, extract the CC list from the
email archive, and send an acknowledgement email to everyone on that list. And Mark
Brown suggested
simply including the CC list in the commit message as well, so the tools wouldn't even need to query
the mailing list archive.

But Linus T said he didn't want to go too far toward automating the emails. He replied to Kirill and
Mark, saying:

I think I'll just try the "ack when starting the pull" model and see how that works. Maybe I was
overthinking it.

And if it turns out that it would be better to ack after everything has passed, I could easily just do
an email filter for "messages that are to me, but I have archived and not replied to, and that have
'git pull' in them".

I use email filters for pinpointing the pulls to begin with, I could just use email filters to
pinpoint the pull requests that I have already handled.

So it seemed as though Linus had decided to go one way, but then in another email, he said, "I'm
starting to think that mailing list automation really would be a good idea", and he went on, "I think it
might be good to have some generic model for 'give me a trigger when XYZ hits git tree ABC' that
people could just do in general, *but* I think the 'scan mailing lists for regular pull requests'
would actually be nicer."

He continued:

It would be much nicer if the "notification" really did the right thing, and
created an actual email follow-up, with the correct To/Cc and subject lines, but also the proper
"References" line so that it actually gets threaded properly too. That implies that it really should
be integrated into the mailing list itself. But I don't know how flexible the whole lkml archive bot
is for things like this. But I assume you have _some_ hook into new messages coming in for
lore.kernel.org?

The discussion ended there.

So, nothing was said about the code of conduct, and nothing about how he used his time away from kernel
development. He just focused on catching up on merges and discussing possible changes to his workflow. The more
interesting cases will come when a real conflict does emerge, as it inevitably must. There are all
sorts of security and other implementation topics that typically cause conflict, not to mention cases
where developers disagree on the behavior of existing code and, thus, on the right way to fix an
issue.

Note: if you're mentioned in this article and want to send a
response, please send a message with your response text to
ljeditor@linuxjournal.com, and we'll run it in the next Letters section and
post it on the website as an addendum to the original article.

 About the Author

Zack Brown is a tech journalist at Linux Journal and Linux
Magazine, and is a former author of the "Kernel Traffic" weekly
newsletter and the "Learn Plover" stenographic typing tutorials. He
first installed Slackware Linux in 1993 on his 386 with 8 megs of RAM
and had his mind permanently blown by the Open Source community. He
is the inventor of the Crumble pure strategy board game,
which you can make yourself with a few pieces of cardboard. He also
enjoys writing fiction, attempting animation, reforming Labanotation,
designing and sewing his own clothes, learning French and spending time
with friends'n'family.

[image: Zack Brown]

Linux and Supercomputers

As we sit here, in the year Two Thousand and Eighteen (better known as "the future,
where the robots live"), our beloved Linux is the undisputed king of supercomputing.
Of the top 500 supercomputers in the world, approximately zero of them don't run Linux
(give or take...zero). By Bryan Lunduke

The most complicated, powerful computers in the world—performing the most intense
processing tasks ever devised by man—all rely on Linux. This is an amazing feat
for the little Free Software Kernel That Could, and one heck of a great bragging point
for Linux enthusiasts and developers across the globe.

But it wasn't always this way.

In fact, Linux wasn't even a blip on the supercomputing radar until the late 1990s.
And, it took another decade for Linux to gain the dominant position in the fabled "Top
500" list of most powerful computers on the planet.

A Long, Strange Road

To understand how we got to this mind-blowingly amazing place in computing history, we
need to go back to the beginning of "big, powerful computers"—or at least, much
closer to it: the early 1950s.

Tony Bennett and Perry Como ruled the airwaves, The Day The Earth Stood
Still was
in theaters, I Love Lucy made its television debut, and holy moly, does that feel
like a long time ago.

In this time, which we've established was a long, long time ago, a gentleman named
Seymour Cray—whom I assume commuted to work on his penny-farthing and rather
enjoyed a rousing game of hoop and stick—designed a machine for the Armed Forces
Security Agency, which, only a few years before (in 1949), was created to handle
cryptographic and electronic intelligence activities for the United States military.
This new agency needed a more powerful machine, and Cray was just the man (hoop and
stick or not) to build it.

[image: Seymour Cray]

Figure 1. Seymour Cray, Father of the Supercomputer (from http://www.startribune.com/minnesota-history-seymour-cray-s-mind-worked-at-super-computer-speed/289683511

This resulted in a machine known as the Atlas II.

Weighing a svelte 19 tons, the Atlas II was a groundbreaking powerhouse—one of the
first computers to use Random Access Memory (aka "RAM") in the form of 36 Williams
Tubes (Cathode Ray Tubes, like the ones in old CRT TVs and monitors, capable of
storing 1024 bits of data each).

In 1952, Cray requested authorization to release and sell the computer commercially.
The Armed Forces Security Agency agreed to the request (so long as a few super special
instructions were removed that they felt should not be in the hands of the public).
The result was the Univac 1103, released at the beginning of 1953, ushering in the era
of supercomputers.

And, with that, the supercomputer industry was born.

Note: the Armed Forces Security Agency? It still exists—sort of. Nowadays you
might recognize it by a more familiar name: the National Security Agency. That's
right, we can credit the NSA for helping kickstart supercomputing.

Throughout the 1970s, 1980s and 1990s, the supercomputer continued to flourish.
Faster machines were made. More machines were sold. Governments, companies and
researchers of the world became increasingly reliant on these mammoth beasts to crunch
ever-growing sets of data.

But there was a big problem: the software was really hard to make.

The earliest supercomputers, such as the Univac 1103, used simple time-sharing
operating systems—often ones developed in-house or as prototypes that ended up
getting shipped, such as with the adorably named Chippewa Operating System.

Note: the Chippewa Operating System was developed in the town of Chippewa Falls,
located on the Chippewa River, in Chippewa County. That 11,000-person town in
Wisconsin was the birthplace of Seymour Cray...and, arguably, the birthplace of
supercomputing.

[image: Univac]

Figure 2. Univac 1103 at NASA's Lewis Flight Propulsion Laboratory (Image from https://images.nasa.gov/details-GRC-1955-C-39782.html

As time went on, the engineering investment required to develop, test and
ship the operating system properly (and corresponding software stack) for these supercomputers
was (in many cases) taking longer, and costing more, than the creation of the hardware
itself. Obviously things needed improve.

For many years, the solution came in the form of licensing and porting existing UNIX
systems. This brought with it large catalogs of well tested (usually) and well
understood (sometimes) software that could jump-start the development of
task-specific
software for these powerhouses.

This was so popular and successful, that UNIX variants—such as UNICOS, a Cray port
of AT&T's UNIX System V—dominated the supercomputing market to an extreme degree.
Out of the 500 fastest machines, only a small handful (less than 5%) were running
something other than UNIX.

Note: UNIX System V (originally by AT&T) was a key component of the (in)famous SCO
lawsuits relating to Linux. Richard Stallman is also once quoted as saying System V
"was the inferior version of Unix".

As great as this was...it wasn't ideal. Licensing fees were high. The pace of
advancement was slow(-er than it should have been). The supercomputer industry was
geared up and ready for change.

A Wild Linux Appears

In June 1998, that change arrived in the form of Linux.

Known as the "Avalon Cluster", the world's first Linux-powered supercomputer was
developed at the Los Alamos National Laboratory for the (comparatively) tiny cost of
$152,000.

[image: Michael Warren]

Figure 3. Michael Warren, Theoretical Astrophysicist, in Front of a Bank
of Avalon Nodes (from https://docs.huihoo.com/hpc-cluster/avalon/)

Composed of a cluster of DEC Alpha computers (68 cores in total) and powered by 531MHz EV56 CPUs,
this Linux-y beast pumped out a whopping 19.3 Gigaflops—just enough
to help it debut as the 314th most powerful computer on Earth.

Sure, coming in 314th place may not seem like a win, but everyone has to start
somewhere! And in 1998, this was downright amazing. In fact, this was, at the time,
one of the cheapest dollar-per-Gigaflop supercomputers you could build.

That price-to-performance ratio grabbed a lot of attention among research labs and
companies on tight budgets. With that single system, Linux made a name for itself as
the "poor man's supercomputer system", which is much more of a good thing than it
sounds like, resulting in multiple organizations investing in Linux-based computing
clusters almost immediately.

Within two years—by around the year 2000—there were roughly 50 supercomputers on
the top 500 list powered by our favorite free software kernel. From zero to 10% of
the market in two years? I'd call that one heck of a big win.

Thanks, in large part, to that little cluster of DEC Alphas in Los Alamos.

Things Really Take Off

If you ever want a lesson in how quickly an entire industry can change, look no
further than the supercomputing space between 2002 and 2005.

In the span of three short years, Linux unseated UNIX and became the king of the biggest
computers throughout the land. Linux went from roughly 10% market share to just shy
of 80%. In just three years.

Think about that for a moment. Right now it's 2018. Imagine if in 2021 (just three years
from now), Linux jumped to 80% market share on desktop PCs (and Windows dropped down to
just 10% or 20%). Besides being fun to imagine (sure brought a smile to my face),
it's a good reminder of just how astoundingly volatile the computing world can be. In
this case, luckily, it was for the better.

As amazing as 80% market share was, Linux clearly wasn't satisfied. A point had to be
made. A demonstration of the raw power and unlimited potential of Linux must be shown
to the world.

Preferably on television. With Alex Trebek.

The Watson Era

In 2011, Linux won Jeopardy.

Well, a Linux-powered supercomputer, at any rate.

Watson, developed by IBM, consisted of 2,880 POWER7 CPU cores (at 3.5GHz) with 16
terabytes of RAM, powered by a Linux-based system (SUSE Linux).

And, it easily beat the two top Jeopardy champions of all time in what has to be one
of the proudest moments for Linux advocates the world over. News articles and TV
shows across the land promoted this event as a "Man vs. Machine" showdown, with the
machine winning.

Watson had enough horsepower to process roughly one million books every second—with
advanced machine learning and low latency—allowing it to prove that it was far
superior to humans at trivia games. On TV.

Yet, despite that overwhelming show of intellectual force, Watson never actually made
the list of the Top 500 supercomputers. In fact, it never even was close—falling
significantly short of even the slowest machines on that illustrious list. If that
isn't a clear sign of our impending enslavement by our computer overlords, I don't
know what is.

I suppose we can take some solace in the fact that it's running Linux. So, there's
that.

The Current Top Supercomputers

Are you running Red Hat Enterprise on your servers or workstations? How about Fedora
or CentOS?

Well if so, you're in good company—really, crazy, over-the-top good company.

As of November 2018 (the most recent Top 500
Supercomputer List), the fastest computer in
the world, IBM's "Summit", runs Red Hat Enterprise 7.4.

[image: IBM's Summit Supercomputer]

Figure 4. IBM's Summit Supercomputer (Image from ORNL
Launches Summit Supercomputer, CC 2.0)

When I say "fastest computer", that is, perhaps, a bit of an understatement. This
machine clocks in at more than 143 petaflops—50 petaflops faster than any computer ever
built. In fact, it is more than 7.4 million times faster than that first Linux
supercomputer: the Avalon Cluster.

To give that a visual: if the Avalon Cluster is represented by walking, slowly, at one
mile per hour...Summit would be walking to the moon. In two minutes. [Insert
obligatory "but can it run crysis" joke here.]

Summit is composed of 4,356 individual nodes—connected to each other using
Mellanox dual-rail EDR InfiniBand—each powered by dual Power9 22-core processors
and 6 NVIDIA Tesla V100 GPUs.

Total power draw: 8,805 kW. Yeah, you probably don't want to run the microwave with
this bad-boy turned on. Might pop a fuse.

As crazy as that power consumption number is, the IBM Summit (which
currently sits at the Oak Ridge National Laboratory) uses roughly half
(no joke) the power of both of the next two supercomputers:
IBM's own Sierra (in spot number 2) and China's number-three-ranked
Sunway TaihuLight—both of which are nearly tied in performance.

Sunway TaihuLight is also Linux-powered (using Sunway's in-house
developed RaiseOS) and clocks in at a whopping 93 petaflops. Until the
Summit came along, TaihuLight was the king, dominating the
supercomputer performance list for the past two years.

And, those are just the top three. Numbers 4 through 500 all run Linux
too.

Complete and Total Dominance

That's right. Every single supercomputer—at least every one that broke the speed
barrier and made it into the top 500 list—is running Linux. Every one. 100%
market share of the current fastest computers the world has ever seen.

Call me crazy, but I'd declare that a teensy, tiny victory.

One might argue that, having reached 100% market share, there's nowhere to go...but
down. That, with the volatility of the computing industry (supercomputing in
particular), Linux eventually could become unseated from our high, golden throne.

I say, nay. This is a challenge. Think of it like playing King of the Hill. UNIX
held the top-dog spot for a few decades. I bet we can beat that record.

Resources

	"Minnesota
history: Seymour Cray's mind worked at super-computer speed"

	UNIVAC 1103

	Chippewa Operating System

	UNIX System V

	Avalon Cluster

	Avalon: an Alpha/Linux cluster achieves 10
Gflops for $15k

	DEC Alpha

	IBM
Watson

	IBM's Watson Supercomputer Destroys
Humans in Jeopardy (Engadget Video)

	Top 500
Supercomputer List

	IBM Summit
Supercomputer—the most powerful computer on the planet

	Sierra Supercomputer

	Sunway TaihuLight

 About the Author

Bryan Lunduke is a former Software Tester, former Programmer, former VP of
Technology, former Linux Marketing Guy (tm), former openSUSE Board
Member...and current Deputy Editor of Linux Journal as well as host of the
(aptly named) Lunduke Show.

[image: Bryan Lunduke]

Data in a Flash, Part I: the Evolution of Disk Storage and an
Introduction to NVMe

NVMe drives have paved the way for computing at stellar speeds, but
the technology didn't suddenly appear overnight. It was
through an evolutionary process that we now rely on the very performant
SSD for our primary storage tier. By Petros Koutoupis

Solid State Drives (SSDs) have taken the computer industry
by storm in recent years. The technology is impressive with its high-speed capabilities. It
promises low-latency access to sometimes critical data while
increasing overall performance, at least when compared to what is now
becoming the legacy Hard Disk Drive (HDD). With each passing year, SSD
market shares continue to climb, replacing the HDD in many sectors.
The effects of this are seen in personal, mobile and server
computing.

IBM first unleashed the HDD into the computing world in 1956. By
the 1960s, the HDD became the dominant secondary storage device
for general-purpose computers (emphasis on secondary storage
device, memory being the first). Capacity and performance were the primary characteristics
defining the HDD. In many
ways, those characteristics continue to define the technology—although,
not in the most positive ways (more details on that shortly).

The first IBM-manufactured hard drive, the 350 RAMAC, was as large as two
medium-sized refrigerators with a total capacity of 3.75MB on
a stack of 50 disks. Modern HDD technology has produced disk drives with
volumes as high as 16TB, specifically with the more recent
Shingled Magnetic Recording (SMR) technology coupled with helium—yes,
that's the same chemical element abbreviated as He in the
periodic table. The sealed helium gas increases the potential speed of the
drive while creating less drag and turbulence. Being less dense than
air, it also allows more platters to be stacked in the same space used
by 2.5" and 3.5" conventional disk drives.

[image: A lineup of Standard HDDs]

Figure 1. A lineup of Standard HDDs throughout Their History
and across All Form Factors
(by Paul R. Potts—Provided by Author, CC BY-SA 3.0 us,
https://commons.wikimedia.org/w/index.php?curid=4676174)

A disk drive's performance typically is calculated by the time
required to move the drive's heads to a specific track or cylinder
and the time it takes for the requested sector to move under the
head—that is, the latency. Performance is also measured at the
rate by which the data
is transmitted.

Being a mechanical device, an HDD does not perform nearly as fast as
memory. A lot of moving components add to latency times
and decrease the overall speed by which you can access data (for both read
and write operations).

[image: Disk Platter Layout]

Figure 2. Disk Platter Layout

Each HDD has magnetic platters inside, which often are referred to
as disks. Those platters are what stores the information. Bound by a
spindle and spinning them in unison, an HDD will have more than one
platter sitting
on top of each other with a minimum amount of space in between.

Similar to how a phonograph record works, the platters are double-sided,
and the surface of each has circular etchings called tracks. Each
track is made up of sectors. The number of sectors on each track
increases as you get closer to the edge of a platter. Nowadays, you'll
find that the physical size of a sector is either 512 bytes or 4 Kilobytes
(4096 bytes). In the programming world, a sector typically equates
to a disk block.

The speed at which a disk spins affects the rate at
which information can be read. This is defined as a disk's
rotation rate, and it's measured at revolutions
per minute (RPM). This is why you'll find modern drives
operating at speeds like 7200 RPM (or 120 rotations per second). Older
drives spin at slower rates. High-end drives may spin at higher
rates. This limitation creates a bottleneck.

An actuator arm sits on top of or below a platter. It extends and
retracts over its surface. At the end of the arm is a read-write head. It
sits at a microscopic distance above the surface of the platter. As
the disk rotates, the head can access information on the current track
(without moving). However, if the head needs to move to the next track
or to an entirely different track, the time to read or write data
is increased. From a programmer's perspective, this is referred
to as the disk seek, and this creates a second bottleneck for the technology.

Now, although HDDs' performance has been increasing with newer disk
access protocols—such as Serial ATA (SATA) and Serial Attached SCSI
(SAS)—and technologies, it's still a bottleneck to the CPU and, in turn,
to the overall computer system. Each disk protocol has its own hard limits
on maximum throughput (megabytes or gigabytes per second). The method
in which data is transferred is also very serialized. This works well with
a spinning disk, but it doesn't scale well to Flash technologies.

Since its conception, engineers have been devising newer and more creative
methods to help accelerate the HDDs' performance (for example, with memory
caching),
and in some cases, they've completely replaced them with technologies like
the SSD. Today, SSDs are being deployed everywhere—or so it seems. Cost
per gigabyte is decreasing, and the price gap is narrowing between
Flash and traditional spinning rust. But, how did we get here in the first
place? The SSD wasn't an overnight success. Its history is more of a
gradual one, dating back as far as when the earliest
computers were being developed.

A Brief History of Computer Memory

Memory comes in many forms, but before Non-Volatile Memory (NVM) came
into the picture, the computing world first was introduced to volatile
memory in the form of Random Access Memory (RAM). RAM introduced
the ability to write/read data to/from any location of the storage
medium in the same amount of time. The often random physical location of
a particular set of data did not affect the speed at which the operation
completed. The use of this type of memory masked the pain of accessing
data from the exponentially slower HDD, by caching data read often or
staging data that needed to be written.

The most notable of RAM technologies is Dynamic Random Access Memory
(DRAM). It also came out of the IBM labs, in 1966, a decade after
the HDD. Being that much closer to the CPU and also not having to deal
with mechanical components (that is, the HDD), DRAM performed at stellar
speeds. Even today, many data storage technologies strive to perform
at the speeds of DRAM. But, there was a drawback, as I emphasized
above: the technology was volatile, and as soon as the capacitor-driven
integrated circuits (ICs) were deprived of power, the data disappeared
along with it.

Another set of drawbacks to the DRAM technology is its very low
capacities and the price per gigabyte. Even by today's standards,
DRAM is just too expensive when compared to the slower HDDs and SSDs.

Shortly after DRAM's debut came Erasable Programmable Read-Only
Memory (EPROM). Invented by Intel, it hit the scene at around 1971. Unlike
its volatile counterparts, EPROM offered an extremely sought-out
industry game-changer: memory that retains its data as soon as system
power is shut off. EPROM used transistors instead of capacitors in
its ICs. Those transistors were capable of maintaining state,
even after the electricity was cut.

As the name implies, the EPROM was in its own class of Read-Only Memory
(ROM). Data typically was pre-programmed into those chips using special
devices or tools, and when in production, it had a single purpose: to
be read from at high speeds. As a result of this design, EPROM
immediately became popular in both embedded and BIOS applications,
the latter of which stored vendor-specific details and configurations.

Moving Closer to the CPU

As time progressed, it became painfully obvious: the closer you move data
(storage) to the CPU, the faster you're able to access (and manipulate)
it. The closest memory to the CPU is the processor's registers. The
amount of available registers to a processor varies by architecture. The
register's purpose is to hold a small amount of data intended for
fast storage. Without a doubt, these registers are the fastest way to
access small sizes of data.

Next in line, and following the CPU's registers, is the CPU
cache. This is a hardware cache built in to the processor module and
utilized by the CPU to reduce the cost and time it takes to access
data from the main memory (DRAM). It's designed around Static
Random Access Memory (SRAM) technology, which also is a type of volatile
memory. Like a typical cache, the purpose of this CPU cache is to store
copies of data from the most frequently used main memory locations. On
modern CPU architectures, multiple and different independent
caches exist (and some of those caches even are split). They are organized
in a hierarchy of cache levels: Level 1 (L1), Level 2 (L2), Level 3
(L3) and so on. The larger the processor, the more the cache levels, and the
higher the level, the more memory it can store (that is, from KB to MB). On
the downside, the higher the level, the farther its location is
from the main CPU. Although mostly unnoticeable to modern applications,
it does introduce latency.

[image: General Outline]

Figure 3. General Outline of the
CPU and Its Memory Locations/Caches

The first documented use of a data cache built in to the processor
dates back to 1969 and the IBM System/360 Model 85 mainframe computing
system. It wasn't until the 1980s that the more mainstream
microprocessors started incorporating their own CPU caches. Part of that
delay was driven by cost. Much like it is today, (all types of) RAM was
very expensive.

So, the data access model goes like this: the farther you move away from
the CPU, the higher the latency. DRAM sits much closer to the CPU than
an HDD, but not as close as the registers or levels of caches designed
into the IC.

[image: Model of Data Access]

Figure 4. High-Level
Model of Data Access

The Solid-State Drive

The performance of a given storage technology was constantly gauged
and compared to the speeds of CPU memory. So, when the first commercial
SSDs hit the market, it didn't take very long for both companies and
individuals to adopt the technology. Even with a higher price tag, when
compared to HDDs, people were able to justify the expense. Time is money,
and if access to the drives saves time, it potentially can increase
profits. However, it's unfortunate that with the introduction of the
first commercial NAND-based SSDs, the drive didn't move data storage
any closer to the CPU. This is because early vendors chose to adopt
existing disk interface protocols, such as SATA and SAS. That decision
did encourage consumer adoption, but again, it limited overall throughput.

[image: Form Factor]

Figure 5. SATA SSD in a 2.5" Drive Form Factor

Even though the SSD didn't move any closer to the CPU, it did achieve a new
milestone in this technology—it reduced seek times across the storage media,
resulting in significantly less latencies. That's because the drives
were designed around ICs, and they contained no movable components. Overall
performance was night and day compared to traditional HDDs.

The first official SSD manufactured without the need of a power
source (that is, a battery) to maintain state was introduced in 1995 by
M-Systems. They were designed to replace HDDs in mission-critical
military and aerospace applications. By 1999, Flash-based technology
was designed and offered in the traditional 3.5" storage drive
form factor, and it continued to be developed this way until 2007 when
a newly started and revolutionary startup company named Fusion-io (now
part of Western Digital) decided to change the performance-limiting
form factor of traditional storage drives and throw the technology
directly onto the PCI Express (PCIe) bus. This approach removed many
unnecessary communication protocols and subsystems. The design also
moved a bit closer to the CPU and produced a noticeable performance
improvement. This new design not only changed the technology for years
to come, but it also even brought the SSD into traditional data centers.

Fusion-io's products later inspired other memory and storage companies
to bring somewhat similar technologies to the Dual In-line Memory Module
(DIMM) form factor, which plugs in directly to the traditional RAM slot
of the supported motherboard. These types of modules register to the
CPU as a different class of memory and remain in a somewhat protected
mode. Translation: the main system and, in turn, the operating system did
not touch these memory devices unless it was done through a specifically
designed device driver or application interface.

It's also worth noting here that the transistor-based NAND Flash
technology still paled in comparison to DRAM performance. I'm talking
about microsecond latencies versus DRAM's nanosecond latencies. Even
in a DIMM form factor, the NAND-based modules just don't perform as
well as the DRAM modules.

Introducing NAND Memory

What makes an SSD faster than a traditional HDD? The simple answer is that
it is memory built with chips and no moving components. The name of the
technology—solid state—captures this very trait.
But if you'd like
a more descriptive answer, keep reading.

Instead of saving data onto spinning disks, SSDs save that same
data to a pool of NAND flash. The NAND (or NOT-AND) technology is made
up of floating gate transistors, and unlike the transistor designs used
in DRAM (which must be refreshed multiple times per second), NAND is
capable of retaining its charge state, even when power is not supplied
to the device—hence the non-volatility of the technology.

At a much lower level, in a NAND configuration, electrons are stored
in the floating gate. Opposite of how you read boolean logic, a charge
is signified as a "0", and a not-charge is a "1". These bits
are stored in a cell. It is organized in a grid layout referred to as a
block. Each individual row of the grid is called a page, with page sizes
typically set to 4K (or more). Traditionally, there are 128–256 pages
per block, with block sizes reaching as high as 1MB or larger.

[image: NAND Die Layout]

Figure 6. NAND Die Layout

There are different types of NAND, all defined by the number of
bits per cell. As the name implies, a single-level cell (SLC) stores
one
bit. A multi-level cell stores two bits. Triple-level cells store three bits.
And, new to
the scene is the QLC. Guess how many bits it can store? You guessed it:
four.

Now, although a TLC offers more storage density than an SLC NAND, it comes
at a price: increased latency—that is, approximately four times worse for reads
and six times worse for writes. The reason for this rests on how data moves in
and out of the NAND cell. In an SLC NAND, the device's controller needs
to know only if the bit is a 0 or a 1. With an MLC, the cell holds more
values—four to be exact: 00, 01, 10 or 11. In a TLC NAND, it holds eight values:
000, 001, 010, 011, 100, 101, 110, 111. That's a lot of overhead
and extra processing. Either way, regardless of whether your drive is
using SLC or TLC NAND, it still will perform night-and-day faster than
an HDD—minor details.

There's a lot more to share about NAND, such as how reads,
writes and erases (Programmable Erase or PE cycles) work, the last of
which does eventually impact write performance and some of
the technology's early pitfalls, but I won't bore you with that. Just
remember: electrical charges to chips are much faster than moving heads
across disk platters. It's time to introduce the NVMe.

The Boring Details

Okay, I lied. Write performance can and will vary throughout the life
of the SSD. When an SSD is new, all of its data blocks are erased and
presented as new. Incoming data is written directly to the NAND. Once the
SSD has filled all of the free data blocks on the device, it then must erase
previously programmed blocks to write the new data. In the industry,
this moment is known as the device's write cliff. To
free the old blocks, the chosen blocks must be erased. This action
is called the Programmable Erase (PE) cycle, and it increases the
device's write latency. Given enough time, you'll notice that a used
SSD eventually doesn't perform as well as a brand-new SSD. A NAND cell
is programmed to handle a finite amount of erases.

To overcome all of these limitations and eventual bottlenecks, vendors
resort to various tricks, including the following:

	
The over-provisioning of NAND: although a device may register 3TB of
storage, it may in fact be equipped with 6TB.

	
The coalescing of write data to reduce the impacts of write
amplification.

	
Wear leveling: reduce the need of writing and rewriting to the same regions
of the NAND.

Non-Volatile Memory Express (NVMe)

Fusion-io built a closed and proprietary product. This fact alone
brought many industry leaders together to define a new standard to
compete against the pioneer and push more PCIe-connected Flash into
the data center. With the first industry
specifications announced in
2011, NVMe quickly rose to the forefront of SSD
technologies. Remember, historically, SSDs were built on top of SATA
and SAS buses. Those interfaces worked well for the maturing Flash memory
technology, but with all the protocol overhead and bus speed limitations,
it didn't take long for those drives to experience their own fair share
of performance bottlenecks (and limitations). Today, modern SAS drives
operate at 12Gbit/s, while modern SATA drives operate at 6Gbit/s. This
is why the technology shifted its focus to PCIe. With the bus closer to
the CPU, and PCIe capable of performing at increasingly stellar speeds,
SSDs seemed to fit right in. Using PCIe 3.0, modern drives can achieve
speeds as high as 40Gbit/s. Support for NVMe drives was integrated into
the Linux 3.3 mainline kernel (2012).

[image: PCIe NVMe SSD]

Figure 7. A PCIe NVMe SSD
(by Dsimic - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=41576100)

What really makes NVMe shine over the operating system's legacy storage
stacks is its simpler and faster queueing mechanisms. These are called
the Submission Queues (SQs) and Completion Queues (CQs). Each queue is a
circular buffer of a fixed size that the operating system uses to submit
one or more commands to the NVMe controller. One or more of these queues
also can be pinned to specific cores, which allows for more uninterrupted
operations. Goodbye serial communication. Drive I/O is now parallelized.

Non-Volatile Memory Express over Fabric (NVMeoF)

In the world of SAS or SATA, there is the Storage Area Network (SAN). SANs
are designed around SCSI standards. The primary goal of a SAN (or any
other storage network) is to provide access of one or more storage volumes
across one or more paths to a single or multiple operating system host(s)
in a network. Today, the most commonly deployed SAN is based on iSCSI,
which is SCSI over TCP/IP. Technically, NVMe drives can be configured
within a SAN environment, although the protocol overhead introduces
latencies that make it a less than ideal implementation. In 2014, the NVMe
Express committee was poised to rectify this with the NVMeoF standard.

The goals behind NVMeoF are simple: enable an NVMe transport bridge,
which is built around the NVMe queuing architecture, and avoid any and
all protocol translation overhead other than the supported NVMe commands
(end to end). With such a design, network latencies noticeably drop (less
than 200ns). This design relies on the use of PCIe switches.
A second design has been gaining ground that's based on the
existing Ethernet fabrics using Remote Direct Memory Access (RDMA).

[image: NVMe Comparison]

Figure 8. A Comparison of NVMe
Fabrics over Other Storage Networks

The 4.8 Linux kernel introduced a lot of new code to support NVMeoF. The
patches were submitted as part of a joint effort by the hard-working
developers over at Intel, Samsung and elsewhere. Three major components were
patched into the kernel, including the general NVMe Target Support
framework. This framework enables block devices to be exported from the
Linux kernel using the NVMe protocol. Dependent upon this framework, there
is now support for NVMe loopback devices and also NVMe over Fabrics RDMA
Targets. If you recall, this last piece is one of the two more common
NVMeoF deployments.

Conclusion

So, there you have it, an introduction and deep dive into Flash
storage. Now you should understand why the technology is both increasing
in popularity and the preferred choice for high-speed computing.
Part II of this article shifts focus to using NVMe drives in a Linux environment and
accessing those same NVMe drives across an NVMeoF network.

For Further Reading

	
NVM Express: "an open collection of
standards and information to fully expose the benefits of non-volatile
memory in all types of computing environments from mobile to data center".

	
NVM Express
(Wikipedia)

	
"What
is NVMe and why is it important? A Technical Guide" by Rohit
Gupta

	
"A Beginner's
Guide to NVMe" by J. Metz

About the Author

Petros Koutoupis, LJ Editor at Large,
is currently a senior platform
architect at IBM for its Cloud Object Storage division (formerly
Cleversafe). He is also the creator and maintainer of the RapidDisk
Project.
Petros has worked in the data storage
industry for well over a decade and has helped pioneer the many
technologies unleashed in the wild today.

Data in a Flash, Part II: Using NVMe Drives and Creating an NVMe over
Fabrics Network

By design, NVMe drives are intended to provide local access to the
machines they are plugged in to; however, the NVMe over Fabric
specification seeks to address this very limitation by enabling remote
network access to that same device. By Petros Koutoupis

This article puts into practice what you learned in Part I and shows
how to use NVMe drives in a Linux environment. But, before continuing,
you first need to make sure that your physical (or virtual)
machine is up to date. Once you verify that to be the case,
make sure you're able to see all connected NVMe devices:

$ cat /proc/partitions |grep -e nvme -e major
major minor #blocks name
 259 0 3907018584 nvme2n1
 259 1 3907018584 nvme3n1
 259 2 3907018584 nvme0n1
 259 3 3907018584 nvme1n1

Those devices also will appear in sysfs:

$ ls /sys/block/|grep nvme
nvme0n1
nvme1n1
nvme2n1
nvme3n1

If you don't see any connected NVMe devices, make sure the kernel
module is loaded:

petros@ubu-nvme1:~$ lsmod|grep nvme
nvme 32768 0
nvme_core 61440 1 nvme

Next, install the drive management utility called
nvme-cli. This utility is defined and maintained by the very
same
NVM Express committee that defined the NVMe specification. The nvme-cli
source code is hosted on
GitHub. Fortunately,
some operating
systems offer this package in their internal repositories.
Installing it on the latest Ubuntu looks something like this:

petros@ubu-nvme1:~$ sudo add-apt-repository universe
petros@ubu-nvme1:~$ sudo apt update && sudo apt install
 ↪nvme-cli

Using this utility, you're able to list more details of all connected
NVMe drives (note: the tabular output below has been reformatted and
truncated to better fit here):

$ sudo nvme list
Node SN Model Namespace Usage Format FW Rev
--
/dev/nvme0n1 PHLF814001... Dell Express Flash NVMe P4500 4.0TB SFF 1
 ↪4.00 TB / 4.00 TB 512 B + 0 B QDV1DP12
/dev/nvme1n1 PHLF814300... Dell Express Flash NVMe P4500 4.0TB SFF 1
 ↪4.00 TB / 4.00 TB 512 B + 0 B QDV1DP12
/dev/nvme2n1 PHLF814504... Dell Express Flash NVMe P4500 4.0TB SFF 1
 ↪4.00 TB / 4.00 TB 512 B + 0 B QDV1DP12
/dev/nvme3n1 PHLF814502... Dell Express Flash NVMe P4500 4.0TB SFF 1
 ↪4.00 TB / 4.00 TB 512 B + 0 B QDV1DP12

Note: if you don't have a physical NVMe drive connected to your
machine but still want to follow along (in limited form), you can
install and simulate an NVMe controller plus drive(s) in the
latest VirtualBox virtualization application.

Drive Management

Issuing the nvme command on the command line prints an
online help menu with a complete list of features and functions, some of
which locate and identify various NVMe controllers, drives and
their namespaces:

list List all NVMe devices and namespaces on machine
list-subsys List nvme subsystems
id-ctrl Send NVMe Identify Controller
id-ns Send NVMe Identify Namespace, display structure
list-ns Send NVMe Identify List, display structure

Other features of the nvme-cli utility introduce namespace management:

ns-descs Send NVMe Namespace Descriptor List, display
 ↪structure
create-ns Creates a namespace with the provided parameters
delete-ns Deletes a namespace from the controller
attach-ns Attaches a namespace to requested controller(s)
detach-ns Detaches a namespace from requested controller(s)

Namespaces are a unique function of the NVMe drive. Think of them as
sort of a virtual partition of the physical device. A namespace is
a defined quantity of non-volatile memory that can be formatted into
logical blocks. When provisioned, one or more namespaces are connected
to the controller (or to a host, sometimes remotely). Each can support
various block sizes (such as 512 bytes, 4 KB and so on). When defined, they
will appear as separate block devices to the host.

If the drive contains a single namespace, listing it will showcase
the following:

$ nvme list-ns /dev/nvme0
[0]:0x1

If you start creating more namespaces, it will be reflected in
the listing:

$ sudo nvme list-ns /dev/nvme0
[0]:0x1
[1]:0x2

and again in the number of block devices registered by your operating
system:

$ cat /proc/partitions |grep nvme0
 259 0 1953509292 nvme0n1
 259 1 1953509292 nvme0n2

With the same utility, you are able to access drive-level logging:

get-log Generic NVMe get log, returns log in raw format
fw-log Retrieve FW Log, show it
smart-log Retrieve SMART Log, show it
error-log Retrieve Error Log, show it
effects-log Retrieve Command Effects Log, show it

And you can also set drive-level features:

get-feature Get feature and show the resulting value
set-feature Set a feature and show the resulting value
set-property Set a property and show the resulting value

For example, let's say you want to enable (1) or disable (0) the drive's
volatile
write cache (VWC). You can list its current setting like so:

$ sudo nvme id-ctrl /dev/nvme0|grep vwc
vwc : 0

And, set it like so:

$ sudo nvme set-feature /dev/nvme0 -f 0x6 -v 1

You can manage and update drive firmware:

fw-commit Verify and commit firmware to a specific slot
 ↪(fw-activate in old version < 1.2)
fw-download Download new firmware

Reset the controller (but not the connected drives):

reset Resets the controller
subsystem-reset Resets the controller

Discover and connect to other NVMe devices over a network (see below):

discover Discover NVMeoF subsystems
connect-all Discover and Connect to NVMeoF subsystems
connect Connect to NVMeoF subsystem
disconnect Disconnect from NVMeoF subsystem
gen-hostnqn Generate NVMeoF host NQN

And more.

The utility even has plugin extensions to support vendor-specific
functions. The latest revision includes:

intel Intel vendor specific extensions
lnvm LightNVM specific extensions
memblaze Memblaze vendor specific extensions
wdc Western Digital vendor specific extensions
huawei Huawei vendor specific extensions
netapp NetApp vendor specific extensions
toshiba Toshiba NVME plugin
micron Micron vendor specific extensions
seagate Seagate vendor specific extensions

Accessing the Drive across a Network

Let's look at how to leverage the high-speed SSD technology
and expand it beyond the local server. An NVMe doesn't have to be
limited to the server that it's physically plugged in to. In this
example, let's configure a Soft RDMA over Converged Ethernet (RoCE)
network on top of traditional TCP/IP and export/import an NVMe block
device via this method. This will be your NVMeoF network.

Before continuing though, you'll need to understand a couple concepts:

	
Host: as it relates to the current environment, a host will
be the server connecting to a remote block device—specifically, an
NVMe target.

	
Target: the target will be the server exporting the NVMe device
across the network and to the host server.

In this example, and for the sake of convenience, I'm describing using two
virtual machines to create the network. There's absolutely no advantage
in doing this, and I don't recommend that anyone do the same other than to
follow along with the exercise. Realistically, you should
enable the following only on physical machines with high-speed network
cards
connected. Having said that, in the target virtual machine, let's attach a
couple
low-capacity virtual NVMe drives (2GB each):

$ sudo nvme list
Node SN Model Namespace Usage Format FW Rev
--
/dev/nvme0n1 VB1234-56789 ORCL-VBOX-NVME-VER12 1 2.15 GB / 2.15 GB
 ↪512 B + 0 B 1.0
/dev/nvme0n2 VB1234-56789 ORCL-VBOX-NVME-VER12 2 2.15 GB / 2.15 GB
 ↪512 B + 0 B 1.0

(Note: the above tabular output has been edited to fit the column width.)

Again, I've been using a recent release of Ubuntu. To prepare both the
host and target operating environments, install the following packages:

$ sudo apt install libibverbs-dev libibverbs1 rdma-core
 ↪ibverbs-utils

On some distributions, you may need to specify the librxe
package (on Ubuntu, its functions are packaged in rdma-core).

Again, on both the host and target, you'll now load the required kernel
modules (there are a few):

$ sudo modprobe nvme-rdma
$ sudo modprobe ib_uverbs
$ sudo modprobe rdma_ucm
$ sudo modprobe rdma_rxe
$ sudo modprobe nvmet
$ sudo modprobe nvmet-rdma

The following instructions rely heavily on the sysfs
virtual filesystem. In theory, you could export NVMe targets with the
nvmet-cli open-source utility, which does all of that complex
heavy-lifting. But, where is the fun in that?

Setting Up a Soft-RoCE Network

An RDMA network needs be established between both the host and target
servers. On each server, identify the network interface to enable for
this method of transport:

$ ip addr show enp0s3
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
 ↪fq_codel state UP group default qlen 1000
 link/ether 08:00:27:15:4b:da brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.85/24 brd 192.168.1.255 scope global
 ↪dynamic enp0s3
 valid_lft 85865sec preferred_lft 85865sec
 inet6 fe80::a00:27ff:fe15:4bda/64 scope link
 valid_lft forever preferred_lft forever

Let's configure the RDMA interface on top of the preferred Ethernet
interface, but before doing so, first verify that one doesn't
already exist:

$ sudo rxe_cfg status
 Name Link Driver Speed NMTU IPv4_addr RDEV RMTU
 enp0s3 yes e1000

Enable the RDMA environment and add the Ethernet interface:

$ sudo rxe_cfg start
$ sudo rxe_cfg add enp0s3

Verify that you now have your RDMA interface (rxe):

$ sudo rxe_cfg status
 Name Link Driver Speed NMTU IPv4_addr RDEV RMTU
 enp0s3 yes e1000 rxe0 (?)

You'll also find this interface listed in sysfs:

$ ls /sys/class/infiniband
rxe0

After applying the same instructions to both host and target machines,
you'll need to test the RDMA network.

On the host, set up the server:

$ sudo ibv_rc_pingpong -d rxe0 -g 0
 local address: LID 0x0000, QPN 0x000011, PSN 0x5db323,
 ↪GID fe80::a00:27ff:fe48:d511
 remote address: LID 0x0000, QPN 0x000011, PSN 0x3403d4,
 ↪GID fe80::a00:27ff:fe15:4bda
8192000 bytes in 0.40 seconds = 164.26 Mbit/sec
1000 iters in 0.40 seconds = 398.97 usec/iter

On the target, set up the client (replace the IP with the IP address of
your host machine):

$ sudo ibv_rc_pingpong -d rxe0 -g 0 192.168.1.85
 local address: LID 0x0000, QPN 0x000011, PSN 0x3403d4,
 ↪GID fe80::a00:27ff:fe15:4bda
 remote address: LID 0x0000, QPN 0x000011, PSN 0x5db323,
 ↪GID fe80::a00:27ff:fe48:d511
8192000 bytes in 0.40 seconds = 164.46 Mbit/sec
1000 iters in 0.40 seconds = 398.50 usec/iter

If you get responses like those shown above, you've succeeded
in configuring your RDMA network on top of TCP.

Exporting a Target

Mount the kernel user configuration filesystem. This is a
requirement. All of your NVMe Target instructions require the NVMe Target
tree to be made available in this filesystem:

$ sudo /bin/mount -t configfs none /sys/kernel/config/

Create an NVMe Target subsystem to host your devices (to export), and
change into its directory:

$ sudo mkdir /sys/kernel/config/nvmet/subsystems/nvmet-test
$ cd /sys/kernel/config/nvmet/subsystems/nvmet-test

This example simplifies host connections by leaving the newly created
subsystem accessible to any and every host attempting to connect to
it (in a production environment, you definitely should lock this down
to specific host machines by their NQN):

$ echo 1 |sudo tee -a attr_allow_any_host > /dev/null

When a target is exported, it's done with a "unique" NVMe Qualified
Name (NQN). The concept is very similar to the iSCSI Qualified Name
(IQN). This NQN is what enables other operating systems to import and
use the remote NVMe device across a network potentially hosting multiple
NVMe devices.

Define a subsystem namespace and change into its directory:

$ sudo mkdir namespaces/1
$ cd namespaces/1/

Set a local NVMe device to the newly created namespace:

$ echo -n /dev/nvme0n1 |sudo tee -a device_path > /dev/null

And enable the namespace:

$ echo 1|sudo tee -a enable > /dev/null

Now you'll create an NVMe Target port to export the newly created
subsystem and change into its directory path:

$ sudo mkdir /sys/kernel/config/nvmet/ports/1
$ cd /sys/kernel/config/nvmet/ports/1

Remember that Ethernet interface you enabled for RDMA communication? Well,
you'll use its IP address when exporting your subsystem:

$ echo 192.168.1.92 |sudo tee -a addr_traddr > /dev/null

Next, you'll set a few other parameters:

$ echo rdma|sudo tee -a addr_trtype > /dev/null
$ echo 4420|sudo tee -a addr_trsvcid > /dev/null
$ echo ipv4|sudo tee -a addr_adrfam > /dev/null

Then create a softlink to point to the subsystem from your newly created
port:

$ sudo ln -s /sys/kernel/config/nvmet/subsystems/nvmet-test/
 ↪/sys/kernel/config/nvmet/ports/1/subsystems/nvmet-test

You now should see the following message captured in dmesg:

$ dmesg |grep "nvmet_rdma"
[24457.458325] nvmet_rdma: enabling port 1 (192.168.1.92:4420)

Importing a Target

The host machine is currently without an NVMe device:

$ nvme list
Node SN Model Namespace Usage Format FW Rev
------- ------ -------- --------- -------- ---------- ------

Let's scan the target machine for any exported NVMe volumes:

$ sudo nvme discover -t rdma -a 192.168.1.92 -s 4420

Discovery Log Number of Records 1, Generation counter 1
=====Discovery Log Entry 0======
trtype: rdma
adrfam: ipv4
subtype: nvme subsystem
treq: not specified
portid: 1
trsvcid: 4420

subnqn: nvmet-test
traddr: 192.168.1.92

rdma_prtype: not specified
rdma_qptype: connected
rdma_cms: rdma-cm
rdma_pkey: 0x0000

It must be your lucky day. It looks as if the target machine
is exporting one or more volumes. You'll need to remember
its subnqn field: nvmet-test. You'll now connect
to
the subnqn:

$ sudo nvme connect -t rdma -n nvmet-test -a 192.168.1.92
 ↪-s 4420

If you go back to list all NVMe devices, you now should see all those
exported by that one subnqn (note: the tabular output below has been reformatted to fit):

$ sudo nvme list
Node SN Model Namespace Usage Format FW Rev
------- ---- ------ --------- -------- --------- ------
/dev/nvme1n1 8e0999a558e17818 Linux 1 2.15 GB / 2.15 GB
 ↪512 B + 0 B 4.15.0-3

Verify that it also shows up like your other block device:

$ cat /proc/partitions |grep nvme
 259 1 2097152 nvme1n1

You can disconnect from the target device by typing:

$ sudo nvme disconnect -d /dev/nvme1n1

There you have it: a remote NVMe block device exported via an NVMe over
Fabrics network. You now can write to and read from it like any other
locally attached high-performance block device.

Note: if you're seeing I/O errors, there is a known issue with
the Linux rxe code, and you may need to run a newer kernel. It
is believed that kernel commit 2da36d44a9d54a2c6e1f8da1f7ccc26b0bc6cfec
addresses this issue, and it was merged into a later 4.16
release.

Summary

The NVMe drive has changed the landscape of high-speed computing. Both
the specification and technology have redefined access to NAND-based SSD
media and have been updated to cater better to modern workloads. And
although NVMe
typically runs within a local machine, it isn't limited to it. Using
the NVMe over Fabrics technology, the NVMe can expand beyond that local
server and across an entire high-speed network.

Resources

	
nvme-cli Utility on
GitHub

	NVM Express

About the Author

Petros Koutoupis, LJ Editor at Large,
is currently a senior platform
architect at IBM for its Cloud Object Storage division (formerly
Cleversafe). He is also the creator and maintainer of the RapidDisk
Project.
Petros has worked in the data storage
industry for well over a decade and has helped pioneer the many
technologies unleashed in the wild today.

Photography and Linux

Is it possible for a professional photographer to use a FOSS-based
workflow? By Carlos Echenique

I'm a professional photographer based out
of Miami, Florida. I learned photography on my own, starting at age 12, with
a Yashica TL Electro 35mm film SLR. In college, I discovered I also
had quite an affinity for computers and programming, so I got my degrees in
that field. I landed an IT job in county government, and photography
took a back seat in my life until two things happened: I became a father,
and the digital revolution came to the world of photography.

I dove into digital photography as it made practicing my art economical
in the extreme. Having a child meant plenty of opportunities to take
photos. All of my photographer friends suddenly needed someone who could
understand both computers and photography, and I was conveniently placed
to help them.

I turned pro in 2008, when a local ballet troupe asked me to photograph
their performance of The Nutcracker. Other performances followed, and my
skills were further honed. I later was asked by the late Pedro Pablo
Peña
to photograph his International Ballet Festival, which I did for two years.

Fast-forward to 2014 when I started a photography club at my day job
and offered free photography lessons, once a month, to any fellow
employees willing to listen.

In 2017, at the behest of my club members, I was asked to assemble a
low-cost photography laptop configuration, as many of my students wanted to
expand their photographic skills in the post-processing side of digital
photography. I
completed my task, assembling a reasonable portable digital darkroom for
less than $700 USD that included all necessary photo-editing software
with no recurring monthly fees, an upgraded hard drive and a colorimeter.

The laptop turned out so well, I decided to take the plunge myself and
converted my Windows 10 workstation (custom-built by me) to a dedicated
FOSS photography workstation.

Why Did I Buck the Trend?

Everyone knows that if you want to get into digital photography, you're
going to have to invest in Adobe products. At least, that's what the
marketing department at Adobe wants you to think. I'll be honest and
say that I cut my teeth on post-processing with Adobe products. For a
long time, Adobe products were coveted by many but were very, very
expensive, so piracy was rampant. In an effort to curb the software pirates,
Adobe re-bundled its product line as the Adobe Creative Cloud, a pseudo-SAAS
(Software As A Service) offering with monthly/annual subscriptions. I use
the prefix "pseudo", because Creative Cloud has you install your products
locally on your machine and radios the mothership to see if you are
paid up this month. Upgrading no longer involved paying for new versions,
and the latest updates continuously were rolled out to subscribers. Many
hailed this as a revolution, bringing professional-grade software to
the masses for a low, monthly rate. Others called it extortion.

As one grows older, one (hopefully) grows wiser. I came to realize that
the monthly prices of Creative Cloud and many other things were beginning
to pile up, and that if I wanted to have some kind of savings going on, I
needed to cut costs where I could. I'd been following various open-source
photography projects for a number of years, and the aforementioned
laptop project gave me the excuse to dive in and really see if I could
make this work.

How I Do It

Let me break this down into three parts:

	
Hardware: including all of the bits and bobs that I use to craft my images.

	
Software: all of the applications in play.

	
Workflow: the steps I take to make this happen.

First, a word about workflows: a workflow is a set of procedures one uses to
accomplish a task, such as making a peanut butter sandwich, processing a
photograph or putting a Tesla in orbit. How you do it is a very personal
thing, and how I do it may not suit your needs. That said, your mileage may
vary.

One other note: I shoot raw. For the uninitiated, raw is the native
format of the camera. Any digital camera that spits out a JPG file is
handing you the digital equivalent of a Polaroid. The camera does all
of the processing and conversion. Some cameras are very, very good at
that. By setting your camera to record in raw, you record the equivalent
of a digital negative, and any JPGs (or PNGs, TIFFs or pretty much any
other format you can think of) always will be first generation and of
the highest quality. Plus, you get complete control over the conversion
process.

Hardware

As far as cameras are concerned, I have used pretty much every brand out
there. Canon, Nikon, Sony, Fuji, Olympus, Pentax, Hassleblad and even
an old Mamiya 645AF. I currently use an Olympus OM-D E-M1 Mk II for my
studio work and a Fuji X-Pro2 for my street/everyday carry. Both cameras
and lenses are fully supported by the software I use.

I use two systems for my photography: a desktop workstation and
a portable laptop. The specifications of those two systems are vastly
different. The workstation currently sports an AMD Threadripper 1900X
processor with eight cores/16 threads, 32GB RAM, AMD Radeon RX580, 512GB
NVMe PCI SSD boot drive, 4TB home drive and a 9TB locally attached RAID-5
Array. Hopefully next year, I can upgrade to Threadripper 2.

Why so beefy?

The software I mostly work with, Rawtherapee, is heavily
multithreaded. The more threads, the merrier. The difference is
noticeable, especially if you are batch-processing a large number of
images. From some un-scientific testing that I personally did, I found
that raw conversion performance scales almost linearly with core/thread
count (at least with Rawtherapee). My 2C/4T laptop is about 1/4 the speed
of my 8C/16T workstation. I don't know what kind of a performance boost
to expect from the Threadripper 2, but I am eager to try it out.

On top of all that horsepower sits an AMD Radeon RX580 card for GPU
rendering goodness (in Darktable and Open Broadcast Studio once the new
AMDGPUPro drivers are available), a Datacolor Spyder5 colorimeter, a
USB 3.0 card reader and a Wacom Intuos4 medium-sized drawing tablet. A
Dell U3417W UHD Ultrawide monitor crowns this system. I used to have
dual 24-inch monitors, but it was a hassle to keep them calibrated. The
ultrawide (21:9) aspect ratio gives me plenty of screen real estate with
only one color profile to worry about.

My printer is an Epson SureColor P5000 17-inch 12-color printer. This
is a wide-format photo printer, and although I have printed to it
directly from Linux, setting up the printer drivers is a bit tedious. In this
case, I have a 2010 Mac Mini dedicated as print host with up-to-date
printer drivers and a Software RIP (Raster Image Processor). By adding
a $20 dongle to the Mac Mini, I converted it to a headless workstation
accessed via Remmina.

Software

As far as my OS is concerned, I use KDE Neon on my desktop and on my
laptop. I chose this distribution after quite a bit of distro-hopping.

[image: Desktop]

Figure 1. Desktop

The Open Source community has done quite an excellent job with producing
professional-grade photography applications. Here is the list of what
I regularly use.

Rawtherapee

Rawtherapee is an
open-source raw conversion software that is a veritable Swiss Army knife
of graphic functionality. Although it uses a light-table metaphor similar
to Adobe Lightroom, its interface is far more technical and requires a
little getting used to. After working with several hundred photos, I can
quite easily get my signature look and have it recorded as presets. The
only thing missing is the ability to watermark my images and upload them
to online galleries.

[image: Rawtherapee]

Figure 2. Rawtherapee

digiKam

digiKam is an advanced
open-source digital photo management application that runs
on Linux, Windows and macOS. The application provides a
comprehensive set of tools for importing, managing, editing
and sharing photos and raw files. I use digiKam to watermark my
images and upload them to online galleries. digiKam is based
on the Qt libraries used by the KDE desktop environment. If
it's not available for your distribution, you can download the
AppImage.

Note: I recently discovered a bug in the AppImage that prevents
digiKam from uploading to online galleries in the KDE desktop environment
(which is highly ironic as digiKam is a native KDE application). I have
spoken with the developers after having filed a bug report, and they
promise me the issue will be resolved in version 6.0.0, which will
be released "Real Soon".

[image: digiKam]

Figure 3. digiKam

Darktable

Darktable is another piece of
open-source raw conversion software. Unlike Rawtherapee, which gives
you every tool imaginable, Darktable takes its design cues from
Adobe Lightroom, and although it's not a clone, it definitely looks very
familiar. Why do I use Darktable if I have Rawtherapee? Well, it depends
on what kind of look I am going for in my images. I've found that
Rawtherapee is very good with skin tones, while I can easily achieve my
preferred landscape look in Darktable—right tool for the right job.

[image: Darktable]

Figure 4. Darktable

Lensfun

Lensfun is a library and not an end-user application per
se. It's used in all three of the aforementioned applications to handle
camera/lens corrections (distortion, chromatic aberration and so on) to great
effect. However, it requires a tiny bit of massaging to make it truly
useful. As it comes with the applications, it contains a rather dated
version of the library. The way you fix this is to install the package
liblensfun-bin, and then run the command
lensfun-update-data,
which will download the latest version of the library. If your
camera/lens combo is not present, you can submit test images to Lensfun
coverage managed by
Wilson Bronger.

DisplayCal

DisplayCal is a FOSS
color calibration system. In short, this software, in combination with
a colorimeter, allows you to map the color profile of your
computer display accurately. Why is this important? Because cameras, displays and
printers all operate in their own color spaces, and not all of them are
consistent. By profiling your display, you can convert the
colors rendered by your camera to the display accurately, which, in turn, allows
you to map it to the printer's ink/paper color profiles. (Printer
manufacturers go to great lengths to create accurate color profiles
for their printers and paper. You are completely free to go "off the
reservation" and use third-party inks and papers, but you do so at your
own peril.)

Qimage
One

Qimage
One is a software Raster Image Processor (RIP), which allows you to
print on large format printers with greater control and provides the ability to
"nest" images so as to cut down on paper/ink waste. Why is this a big
deal? Professional photo printers are not cheap to maintain. My Epson
P5000 sports 12 ink cartridges, and each cartridge will set you back
~$75 USD. A roll of 16-inch Premium Lustre paper will cost ~$75 USD as
well. A complete restocking of the printer costs ~$975 USD. I run this
on the retasked Mac Mini I mentioned in the hardware section. Qimage
One is available for Mac OS X and Windows.

[image: Qimage One]

Figure 5. Qimage One

Rapid Photo
Downloader

This
little application is the first step in my workflow, ingesting photos
from my camera's memory card, organizing, renaming, sorting and making
a backup copy all in one shot. It truly makes my work much, much easier.

[image: Photo Downloader]

Figure 6. Rapid Photo Downloader

GIMP

Last, but not least, is the GNU Image
Manipulation Program lovingly referred to as GIMP. GIMP is basically
the FOSS equivalent of Photoshop. It's not exactly Photoshop, but you
can accomplish many amazing things with it as well. I use GIMP on those
rare occasions when I need to manipulate an image far beyond simple
adjustments and filters or if I am trying to create digital artwork.

[image: Gimp]

Figure 7. Gimp

Some other very excellent
programs exist that I've not mentioned here, such as
Lightzone, Krita
and Polarr among others. If any of these are one of your
favorites, please don't send me flame mail/death threats; there
are lot of choices out there, and all of them are good.

The Differences between FOSS and Commercial Software

So if this FOSS photography software is so great, why isn't everyone
using it? Well, for one thing, commercial applications have companies
investing large amounts of time and money to the development of their
products. Many camera companies work with large commercial application
developers by providing them early access to new and upcoming gear. FOSS
applications depend on volunteers who are dedicated and talented and
photographers who buy the gear and submit image samples for them to work
on. Commercial applications have large advertising budgets that allow
them to get in front of a lot of eyeballs. When was the last time you saw
an ad for Darktable, GIMP or digiKam? FOSS applications rely mostly on
word of mouth. Training materials is another area where FOSS lags behind
commercial offerings. Because commercial applications are so prevalent,
there is a large ecosystem of third-party training materials, plugins
and accessories. It also helps that some large companies initially paid
a lot of folks to produce those materials.

All is not doom for FOSS photography, however. Many new photographers (and
those of us who are older and have seen the light) realize that camera
gear is expensive, and that the added cost of software would make the art
financially prohibitive for beginners. The quality of FOSS applications
now rivals (and sometimes exceeds) that of commercial offerings. Services
like Patreon allow these projects to be funded on an ongoing basis, and in
turn, they are able to innovate much faster than their commercial counterparts. With
more input from actual photographers, FOSS applications can continue to
evolve as photographic needs change. Plus, since most FOSS offerings are
free, you aren't limited to just one set of applications. Also, many of
these FOSS applications are available on Windows and Mac as well as Linux.

Methods

So, how do I process my photos? Let me say that I prefer to get the
shot right in the camera. Call me old-school if you like, but I prefer
to be taking photos rather than processing them. Don't get me wrong;
I'm not afraid to get my hands "dirty" with post processing. I just like
going places and taking photos better than being holed up in front of
my computer processing them.

As I previously mentioned, I shoot raw, but this method works for JPEG
shooters too. Also, my workflow is what works for me, and it may not work
for you.

The first step is to get the images out of the camera and into my computer
in an organized fashion. This is called ingestion. This is a critical
step, because you can create a great deal of work for yourself in the
future if you don't stay organized from the beginning. The first tool
that comes into play here is Rapid Photo Downloader. When installed,
RPD becomes one of the actions that can be invoked when you insert the
memory card into the card reader. Can't I just plug in the camera and
read directly from it? Yes, but that might involve drivers depending on
your camera, and a card reader is driverless and universal. Once the card
is inserted into the reader, I fire up RPD and, using my preset profile,
import my photos, renaming them in the process based on their metadata
into folders based on the shot date. A copy is made at the same time to
my RAID array, and Syncthing copies it to my NAS for offsite backup later
that evening. (My backup system could be the subject of an entire article
all by itself.)

The second step is called culling. Here I open
Rawtherapee or
Darktable and use the light table function to select the photos
I'm going to work on. I usually mark them with a colored flag, and once
I am done culling, I apply a filter for the red flag in the app, which
narrows my view down to the selected images. At this point, I move to
the third step.

The third step, adjustment, sees me applying general adjustments
to exposure, contrast, highlight/shadow recovery, maybe adding a film
style (I did say I was old-school) and generally tweaking the images
to taste. Both Rawtherapee and Darktable are very powerful in
this respect. I will admit that Rawtherapee's interface can be a bit
daunting, but with research and experimentation, you can learn to manage
it and achieve your desired look.

The fourth step, culling, round 2, has me going over the images and
removing the ones that don't fit the set or just couldn't be massaged
into something I would consider presentable. Your image sets should try
to be cohesive or tell a story. One other tip is to be ruthless in your
culling. Show only your absolute best, as anything else would not showcase
your photographic skills.

And, next comes step five: exporting. Raw files are amazing in their
depth and flexibility. However, they are big, and not everyone can see
them the way you do. So now comes the time to export your images into a
more universal format and prepare them for their ultimate destination. If
you are going to post them on the web, JPEG images in the sRGB colorspace
is the most common format. For printing, I export to 16-bit TIFF images
in a printer-appropriate colorspace. These are much larger than JPEGs
but do not alter the images due to compression.

Step six can be watermarking and uploading or printing, depending
on the image's ultimate destination. For the former, I use digiKam
and its powerful batch engine to add my text watermark and then upload
to my online galleries. For printing, I copy the TIFF images to a shared
folder on my Mac Mini and then start up remmina to log in to the
Mac's graphical interface remotely. From there, I open the images in
Qimage One and process them for printing.

Up to What Point Can Linux Still Be Used?

So, as you can see, except for the printing step, pretty much
the whole workflow is handled very easily by Linux and open-source
photography software. Could I have done the whole thing in Linux? Yes
and no. Depending on your printing needs, you could forego the printer
entirely and use a local professional printing service. Many of those
shops use the ROES system for the uploading and management of images
to be printed. The ROES client is written in Java and is compatible
with Linux. If you invest in a large format printer, you may have
to investigate using a solution similar to what I have set up. Open-source
software RIPs exist, but they have not been updated for more than a
decade. Some commercial Linux solutions are available, but they
are prohibitively expensive.

Image Samples

All of the following images have been processed using the aforementioned
workflow.

[image: Absctract 1]

Figure 8. Abstract 1

[image: Absctract 2]

Figure 9. Abstract 2

[image: Rice Cake]

Figure 10. Rice Cake

[image: Squid]

Figure 11. Squid

[image: Tokyo Subway]

Figure 12. On the Tokyo Subway

[image: Tranquility]

Figure 13. Tranquility

[image: Golden Pavilion]

Figure 14. The Golden Pavilion

Observations and Conclusions

At the start of this article, I posited the question of whether a professional
photographer could work effectively using a FOSS-based workflow.
In my personal opinion, the answer is "yes". Like their
Windows/Mac counterparts, Linux/FOSS workflows require dedication,
study and lots of practice in order to become proficient. Windows/Mac
solutions have large bodies of commercially prepared training materials
and are taught in most institutions of higher learning. The FOSS community
has done an admirable job of producing quality software, and the online
training materials are starting to see some real improvements, as artists
begin to embrace software they can afford during their "starving" phase. A
cursory search on YouTube will reveal hundreds of tutorial videos on
all aspects of the photographic process using FOSS applications. Even
Hollywood has begun to embrace open source. FOSS photography software,
like Linux itself, is quietly making in-roads in the professional photo
industry.

Resources

	
Rawtherapee

	
digiKam

	
digiKam
AppImage

	
Darktable

	
Lensfun
coverage

	
DisplayCal

	
Qimage
One

	
Rapid Photo
Downloader

	
GIMP

	
Lightzone

	
Krita

	
Polarr

About the Author

Carlos Echenique is a Miami, Florida-based photographer specializing in fine
art photography and travel photography. He established his career
photographing professional ballet performances and portrait work. Later,
he branched into travel photography, street photography and abstract
photography. He has curated several local exhibitions and is currently
a Guest Artist with the group 7 Plus 1, a collective of abstract
artists. He recently converted most of his workflow to free open-source
software and is an advocate for FOSS photography.

Beaker: the Decentralized Read-Write Browser

The best future of the internet may be peer-to-peer. The Beaker Browser
offers a glimpse. By Michael McCallister

When Tim Berners-Lee invented the World Wide Web, he envisioned a single
software package that allowed everyone to create and read pages across
the internet. Much has happened in the intervening years, but this idea
is starting to come back.

Many of the web's founders now realize that they didn't sign up for a
web dominated by a few giant corporations relying on collecting massive
amounts of data on its users to sell to advertisers.

The Beaker Browser project is creating a decentralized peer-to-peer web
browser that, if successful, could return the web to its users.
Let's explore how this is done!

Guiding Principles

Beaker Browser serves as a bridge to a possible future for the web—and
the internet. You can use Beaker today to surf the web like any other
Chromium-based browser. More important, you also can use Beaker to
create and support a new, decentralized, server-less internet.

Beaker Browser uses a peer-to-peer network protocol called Dat to
create a decentralized web platform. Websites spread from people seeding
them, BitTorrent-style. When following news and discussions about the
decentralized web, you'll often hear about blockchain as an underlying
basis. The Beaker team thinks that blockchain negotiations and "proof
of work" requirements unnecessarily slow down the web. It's better
to build "communities of trust" among peers than to try to eliminate
trust altogether.

Centralized servers, internet service providers and web hosting firms
restrict the options for users to collaborate with one another to build
a better world. Comcast, AT&T and cable companies seek to end the
principle of net neutrality to narrow the content choices users have
always made on their own. At the same time, Facebook, Amazon, Google
and other giant content corporations seek to keep us locked inside their
respective walled gardens, persuading us that they have all the content
we'll ever need. There's no need to visit the open internet. Both sides
of this corporate clash do this to maximize profits for themselves.

Users deserve better, and Linux users want all the choices.

Explaining Dat

The Dat Project describes itself as
"Modeled after the best parts of Git, BitTorrent, and the internet,
the Dat protocol is a peer-to-peer protocol for syncing files and data
across distributed networks."

Dat began as a file-sharing protocol, designed to allow users to
store and share encrypted files without using centralized services
like Dropbox. With the Dat Desktop app, you can make any folder on your
system use the Dat protocol. Every file in that folder is encrypted with
a private key. Dat also allows for storing version information for each
file shared on the network.

Installing Beaker

The easy way to install v0.8 of Beaker is to head to
https://beakerbrowser.com/download
and pick up the AppImage. You can get
browsers for Mac and Windows here as well. To stay on the
bleeding edge, grab and compile the latest source from GitHub:
https://github.com/beakerbrowser/beaker.

Note: Beaker is a 64-bit application. If you run a 32-bit Linux, you're
out of luck for the moment.

If you haven't used AppImage to install software yet, you may find
this process smile-inducing. Just make the image file executable. You
then can run it from the shell or GUI file manager. Beaker will ask to
integrate with your existing desktop environment, adding itself to your
app launcher for easy access.

Beaker is based on Chromium, so the user interface should be reasonably
familiar. The default start page (beaker://start/) has a search dialog
and a set of default Pinned Bookmarks. Following these links will give
you a pretty good introduction to the Beaker project and the peer-to-peer
web. Note that right-clicking on any element on a page offers an Inspect
Element option to open Developer Tools. Now you're ready to browse.

[image: Beaker Screen]

Figure 1. Learn more about Beaker and the peer-to-peer web on the default
Beaker://start page.

Note: the screenshots in this article were taken from Beaker on
openSUSE Leap 15.

Browsing the Peer-to-Peer Web with Beaker

Entering any standard web address in Beaker will display exactly as it
would in another browser, so that's not especially interesting. Where
you begin to see the bridge to the future is when you look at a Dat-based
page.

Start out by visiting the HTTPS-based Take a Tour intro page.
On the right side of the address bar,
you'll see that this page has a P2P version available.
Click that button to see the Dat version of the page. The
page display should be identical to the HTTPS site. The differences are
subtle. The lock icon on the HTTPS site is replaced by a Share icon;
click the icon for a pointer to the Beaker wiki on GitHub for more
information. Because this page supports both Dat and HTTP, you'll see
the inverse Go to HTTP/S version button too.

Seeding Sites

A peer-to-peer network like BitTorrent and Dat depends on individuals
sharing files with each other. You don't need a server to contain all
the content, just some folks willing to help out. On the right end of
Beaker's address bar, you'll see another share icon, with the number
of peer sites that currently are sharing this site with you. Click that
icon, and you can join the peer-to-peer network, also called a swarm. By
default, you're sharing the page only while you're visiting. The box
tells you the size of the page. You can select a longer period of time
to seed the page with the slider: a day, week, month or forever.

[image: Beaker Browser]

Figure 2. Keep this site online when you seed it on your computer.

When you seed a site, Beaker stores a read-only copy of the page in your
/home directory (in openSUSE, it's inside .config/Beaker Browser). Seeded
sites also go into Beaker's Library, along with the sites you make. You
then can search your Library for relevant content.

Get More Information about a Site

Click the three vertical dots menu next to the shares site count to
access a ton of details about the site. Choose the View Source option.

The first thing you're likely to notice is the Dat link for the page in
the address bar. This is a 64-character public key identifier that never
changes. The link encrypts every file being transferred, controls access
to the archived files and includes version history. Whoever created the
Dat link created (and stores) the private key for that link/content. This
makes a Dat link more secure than even an IP address transported via
HTTPS. Side benefit: you don't need to persuade system administrators
to enable a new IP protocol to identify computers on a network. We have
seen how the transition from IPv4 to IPv6 has gone to date.

The Files tab connects with everything connected to the page
content. Click Seed to spread the site to other
places. Click Make an Editable Copy to download
a copy of the site (or portions of it) to edit.

Click the Network tab to identify who else is seeding the site. You can
use this page to see what IP addresses are sharing, and use the Swarm
Debugger to see if those sharing sites are credible and trustworthy.

Click the About tab to get a description of the site and a downloadable
copy of the Favicon sitting in the corner of the browser.

Creating a Decentralized Site with Beaker

When Tim Berners-Lee invented the web, his browser also could write and
edit pages. Beaker's founder, Paul Frazee, originally wanted his browser
to work the same way. He quickly realized that most web developers today
have their own favorite editor. Beaker still provides an editor,
but you also can import web files from any editor to create a website.

[image: Beaker Edit]

Figure 3. Create and edit peer-to-peer websites. You can share files
too!

To create a Dat-based website in Beaker:

	
Create your content.

	
Open Beaker.

	
From the "hamburger" menu to the right of the address bar, select Create
New→Empty Project.

	
Beaker loads a Library page with a dat.json file and .datignore file.

	
Click the Title field to replace Untitled with something a little more
memorable for your readers.

	
Choose a Favicon by clicking the icon to the left of the Title. Choose
from the items in the menu, or Upload an icon from your system.

	
Click the + and select Import Files or Import Folder
to add your content, scripts and styling files into the project folder.

	
Optional: set a local directory for your website. Go to Settings and click
Set Local Folder. By default, your sites are stored in a "Sites" folder in
your /home directory, with the project title (my-website). Click the pencil
icon to select another directory. Be careful when choosing an existing
directory, as that will become an encrypted folder. Beaker will open the
selected directory in your file manager.

	
Optional: if you prefer, click New+ to create a new project folder or
file. Adding a file opens an editor inside the browser.

	
Optional, but recommended: Beaker suggests you create a README file to
describe your site—who you are, why this site is here, what readers will
get out of it and whatever else comes to mind. Click the README button,
and Beaker adds a README.md file as you'd see in a GitHub project folder.
You can use the Markdown codes to format the file. Beaker reads Markdown
files into HTML automatically. You could create all your content in
Markdown if you like.

These files remain on your system only until you are ready to share the
site with the world (or some subset of it). You can continue writing
and editing files in the project folder as long as you choose. Change
the project title and Favicon on the Settings page.

Forking an Existing Site

Now you've made your website, and you want to make sure everyone sees it. And
by "everyone", I mean "people who can't see Dat links". The problem is that if
you enter dat://beakerbrowser.com into Firefox, the browser may deliver
a Google search page. Among the results is https://beakerbrowser.com,
and you start wondering how that got there. If you already have Beaker
installed, Firefox will suggest opening Dat links with Beaker.

Beaker supports the /.well-known web convention, and you can set this
up to create an HTTPS version of your site. An easy way to do this is
to copy some already shared files from beakerbrowser.com. Here's how:

	
Open the Beaker Browser Dat site.

	
Seed the site. Beaker will download the site's files into your
Library.

	
Click the vertical dots and choose Make an Editable Copy.

	
Make an Editable Copy of the files in the .well-known folder (or just
download them all) into your project folder.

	
Review the files inside the .well-known folder. Where there are references
to beakerbrowser.com, change them to your site's name.

Beaker developer Tara Vancil describes what's going on underneath like this:

Beaker piggybacks off of DNS authentication in combination
with the /.well-known convention to enable dat:// shortnames. When
you visit dat://taravancil.com in Beaker, it sends a request to
https://taravancil.com/.well-known/dat and expects to find a file that
looks like this:
dat://6dff5cff6d3fba2bbf08b2b50a9c49e95206cf0e34b1a48619a0b9531d8eb256/TTL=3600

Because Beaker can trust the DNS resolution, Beaker
can trust that dat://taravancil.com should point to
dat://6dff5cff6d3fba2bbf08b2b50a9c49e95206cf0e34b1a48619a0b9531d8eb256.

Making Your Site Public

To make your new site available to readers, all you really have to
do is send your site's Dat link to someone else.

Fun fact: You can share any files in your library, including the Beaker
AppImage!

Sharing your link on social media will begin to generate traffic as well.

You are now part of the P2P Web!

Be aware that your website is only online when the Dat files are
online. Unless someone else is seeding your site, it shuts down when your
computer does. So, encourage your peers to seed forever. One way around
this limitation is Hashbase.io, "Hosting for the peer-to-peer Web".

Resources and How to Participate in the Beaker Browser

Beaker is still a project in infancy. Dat is a little further ahead,
but both projects could use some help. Here are some ways you can pitch in:

	
Start by using the browser and reporting issues to GitHub.

	
Join the #beakerbrowser chat on Freenode.

	
Go to explore.beakerbrowser.com to see some important P2P sites to surf,
learn and seed. It's included in the default Bookmarks on Beaker's
start page.

	
Create a new Dat site of your own and share it. If you already have a
site, consider mirroring it on Dat.

	
If you've got more advanced coding skills, Paul Frazee
leads a weekly live coding session on YouTube every Sunday
on his channel. There are many other useful videos there.

	
The Beaker APIs offer developers tools to make apps to enhance the
browser.

About the Author

Mike McCallister has written about Linux and FLOSS since the turn of the
millennium. Find him at michaelmccallister.com, Author.MichaelMcCallister
on Facebook, and @workingwriter at Twitter and most everywhere else online.

Open Sauce: Open Science Means Open Source—Or, at Least, It Should

Why open source was actually invented in 1665. By Glyn Moody

When did open source begin? In February 1998, when the
term was coined by Christine Peterson?
Or in 1989, when Richard Stallman drew up the
"subroutinized" GNU GPL? Or
perhaps a little earlier, in 1985, when he
created the GNU Emacs license? How about on March 6, 1665? On that
day, the following paragraph appeared:

Whereas there is nothing more necessary for promoting the
improvement of Philosophical Matters, than the communicating to such, as
apply their Studies and Endeavours that way, such things as are discovered
or put in practise by others; it is therefore thought fit to employ the
Press, as the most proper way to gratifie those, whose engagement in
such Studies, and delight in the advancement of Learning and profitable
Discoveries, doth entitle them to the knowledge of what this Kingdom,
or other parts of the World, do, from time to time, afford, as well
of the progress of the Studies, Labours, and attempts of the Curious
and learned in things of this kind, as of their compleat Discoveries
and performances: To the end, that such Productions being clearly and
truly communicated, desires after solid and usefull knowledge may be
further entertained, ingenious Endeavours and Undertakings cherished,
and those, addicted to and conversant in such matters, may be invited
and encouraged to search, try, and find out new things, impart their
knowledge to one another, and contribute what they can to the Grand design
of improving Natural knowledge, and perfecting all Philosophical Arts,
and Sciences.

Those words are to be found in the
very first issue of the Royal Society's Philosophical Transactions,
the oldest scientific journal in continuous publication in the world,
which published key results by Newton and others. Just as important is
the fact that it established key principles of science that we take for
granted today, including the routine public sharing of techniques and
results so that others can build on them—open source, in other words.

Given that science pretty much invented what we now call the open-source
approach, it's rather ironic that the scientific community is currently
re-discovering openness, in what is known as open science. The movement
is being driven by a growing awareness that the passage from traditional,
analog scientific methods, to ones permeated by digital technology,
is no minor evolution. Instead, it brings fundamental changes to how
science can—and should—be conducted.

The open science revolution can be said to have begun with open
access—the idea that academic papers should be freely available as
digital documents. It takes the original idea behind the Royal Society's
Philosophical Transactions—that news about discoveries should be
set down and published—to the next level, by making that information
freely accessible to all. Open access illustrates neatly the leap between
analog and digital worlds. Where it would have been impossible to make
the printed versions of the Royal Society's Philosophical
Transactions
generally available, the internet can potentially give everyone with an
online connection cost-free access to every article posted online.

The same can be said of another important aspect of open science:
open data. Before the internet, handling data was a tedious and
time-consuming process. But once digitized, even the most capacious
databases can be transmitted, combined, compared and analyzed very
rapidly. For science, this is transformational, since it means that, in
principle, other researchers can check experimental results by downloading
complete datasets and carrying out their own, independent analysis and
evaluation. Just as important, they can conduct new analyses to obtain
results that go beyond the initial discoveries. The development of tools
and techniques to mine data for new information, and to combine it with
other datasets, has led to the
spread of open data ideas and practices far beyond science.

The final leg of the open science tripod, and arguably the most radical
one, is open source. One of the most important developments in science
in the last few decades is the use of digital tools for research.
These might be programs that gather data, or analyze it, or store it.
But however it is used, software is indispensable for modern science.
The problem is, much of the code is specifically written for each scientific
investigation. Despite all the effort that goes into this indispensable
tool, the fruits of that work are rarely shared with other scientists
afterward.

Indeed, even as the open science movement gathers momentum, open
source is conspicuous by its absence. For example, in 2016, the
Council of the European Union issued its important policy statement titled "The
transition towards an Open Science system", in which
open source it not mentioned once. Neither does the 2017 European
Open Science cloud declaration. The 2018 Advancing
Open Science in the EU and the US workshop also seems
to have overlooked this aspect. More recently, The National
Academies Of Sciences, Engineering, And Medicine published a "New
Framework to Speed Progress Toward Open Science". In it, the power
and success of open source is mentioned no less than 20 times, which
is great. Unfortunately, the final recommendations do not include
promoting open source as part of open science.

A major new initiative in Europe, which has been hitting the
headlines in scientific circles, is also silent on open source.
With the support of the European Commission and the European
Research Council, 11 national research funding organizations
recently announced the launch of Plan S by the weirdly named cOAlition S. This
is "an initiative to make full and immediate Open Access to research
publications a reality". Open source could play an important role
here, through the use of high-quality free software applications that
make publishing easier and cheaper than current approaches. Instead,
the plan simply says: "The importance of open archives and repositories
for hosting research outputs is acknowledged because of their long-term
archiving function and their potential for editorial innovation"—open archives, but not open-source archives, that is. Fortunately,
influential figures are calling out this serious oversight. Commenting
on Plan S, Peter Suber, widely recognized as one of the leaders in
the open access world, writes:

The plan promises "support...for Open Access infrastructures
where necessary." So far, so good. But the plan is silent on the
importance of open infrastructure, that is, platforms running on
open-source software, under open standards, with open APIs for
interoperability, and preferably owned or hosted by non-profit
organizations.

As the above indicates, governmental bodies and the top science
organizations show a regrettable lack of interest in working with
open source in order to boost open science. That's surprising and
unacceptable, since much of the code written by researchers has been
funded by the public. There is, therefore, a compelling case that all
such software must be released under an open-source license to
allow anyone—including the people who paid for it with their taxes—to re-use it however they wish.

In the face of that indifference from the big funding bodies,
grass-roots activists are doing what they can with their
limited resources, and there are some hopeful signs of progress.
For example, OPERAS,
a European research infrastructure, has published a white paper
exploring what
open-source solutions are available for creating an open
science scholarly communication infrastructure. Similarly, a
recent post by Lettie Y. Conrad provides a useful survey
of what "open" tools are available for open science:

For purposes of this project, we zeroed in on those tools
provided by non-profit or community-based organizations using open
source software, offering open data, via an open license, leveraging
open standards where possible—basically, as open as humanly and
technologically possible.

Conrad presented her work at a workshop on producing a Joint Roadmap
for Open Science Tools. What's striking is that among the participants in the
workshop, the only mainstream name from the Open Source world is
Mozilla. This shows that alongside the massive failure on the part of
research funding bodies to embrace open source as part of the solution,
there is a similar failure of open-source projects to become active in
this important area.

That's a real shame, because open science offers a huge opportunity
for free software coders to take on new challenges and create some
exciting and innovative programs. As well as enriching the Open Source
community and its projects, such a move also would help accelerate the
open science revolution. It's surely what the founders of the Royal
Society's Philosophical Transactions would have wanted.

 About the Author

Glyn Moody has been writing about the internet since 1994, and about free
software since 1995. In 1997, he wrote the first mainstream feature about
GNU/Linux and free software, which appeared in Wired. In 2001, his
book
Rebel Code: Linux And The Open Source Revolution was published.
Since
then,
he has written widely about free software and digital rights. He has a blog,
and he is active on social media: @glynmoody on Twitter or identi.ca, and
+glynmoody on Google+.

[image: Glyn Moody]

OEBPS/Images/12483f5.jpg

OEBPS/Images/12611aa.jpg

OEBPS/Images/12598f5.jpg

OEBPS/Images/12608aa.jpg

OEBPS/Images/12399f3.jpg

OEBPS/Images/12441f1.jpg

OEBPS/Images/12399f2.jpg

OEBPS/Images/12441f2.jpg

OEBPS/Images/12614f2.jpg

OEBPS/Images/12613f6.jpg

OEBPS/Images/12598f4.jpg

cover.jpeg

OEBPS/Images/12614f1.jpg

OEBPS/Images/12598f3.jpg

OEBPS/Images/ljlogo_masthd_fmt.png

OEBPS/Images/12399f1.jpg

OEBPS/Images/12483f4.jpg

OEBPS/Images/12609f1.jpg

OEBPS/Images/12610aa.jpg

OEBPS/Images/12598f7.jpg

OEBPS/Images/12483f10.jpg

OEBPS/Images/12483f3.jpg

OEBPS/Images/12613f4.jpg

OEBPS/Images/pia-logo-black.jpg

OEBPS/Images/12609f2.jpg

OEBPS/Images/12598f6.jpg

OEBPS/Images/12483f11.jpg

OEBPS/Images/12483f1.jpg

OEBPS/Images/12483f2.jpg

OEBPS/Images/12613f5.jpg

OEBPS/Images/12605aa.jpg

OEBPS/Images/12603f1.jpg

OEBPS/Images/12483f12.jpg

OEBPS/Images/12609f3.jpg

OEBPS/Images/12483f9.jpg

OEBPS/Images/12483f13.jpg

OEBPS/Images/12609f4.jpg

OEBPS/Images/12483f8.jpg

OEBPS/Images/12613f3.jpg

OEBPS/Images/12607aa.jpg

OEBPS/Images/12483f14.jpg

OEBPS/Images/33429.png

OEBPS/Images/12612aa.jpg

OEBPS/Images/12598f8.jpg

OEBPS/Images/12598f2.jpg

OEBPS/Images/12613f2.jpg

OEBPS/Images/12483f7.jpg

OEBPS/Images/12597aa.jpg

OEBPS/Images/12441f3.jpg

OEBPS/Images/12607c.jpg

OEBPS/Images/12613f1.jpg

OEBPS/Images/12483f6.jpg

OEBPS/Images/12584c.jpg

OEBPS/Images/12598f1.jpg

